covariance matrix;
least squares;
Mahalanobis distance;
maximum likelihood;
modified maximum likelihood;
multivariate;
non-normality;
LINEAR-REGRESSION MODEL;
CONFIDENCE-INTERVALS;
MAXIMUM-LIKELIHOOD;
ROBUST ESTIMATION;
VARIANCE;
DESIGN;
DISTRIBUTIONS;
PARAMETERS;
D O I:
10.1080/02331880903043223
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We give a novel estimator of Mahalanobis distance D2 between two non-normal populations. We show that it is enormously more efficient and robust than the traditional estimator based on least squares estimators. We give a test statistic for testing that D2=0 and study its power and robustness properties.
机构:
Louisiana State Univ HSC, Sch Publ Hlth, Biostat Program, New Orleans, LA 70112 USALouisiana State Univ HSC, Sch Publ Hlth, Biostat Program, New Orleans, LA 70112 USA
Oral, Evrim
Oral, Ece
论文数: 0引用数: 0
h-index: 0
机构:
Cent Bank Republ Turkey, Res & Monetary Dept, TR-06100 Ankara, TurkeyLouisiana State Univ HSC, Sch Publ Hlth, Biostat Program, New Orleans, LA 70112 USA
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Jing, Bing-Yi
Kong, Xin-Bing
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Dept Math Sci, Suzhou 215021, Jiangsu, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Kong, Xin-Bing
Zhou, Wang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, SingaporeHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China