Mahalanobis distance under non-normality

被引:2
|
作者
Tiku, Moti L. [2 ]
Islam, M. Qamarul [1 ]
Qumsiyeh, Sahar B. [3 ]
机构
[1] Cankaya Univ, Dept Econ, TR-06530 Ankara, Turkey
[2] Middle E Tech Univ, Dept Stat, TR-06531 Ankara, Turkey
[3] Arab Amer Univ Jenin, Dept Math & Stat, Jenin, Israel
关键词
covariance matrix; least squares; Mahalanobis distance; maximum likelihood; modified maximum likelihood; multivariate; non-normality; LINEAR-REGRESSION MODEL; CONFIDENCE-INTERVALS; MAXIMUM-LIKELIHOOD; ROBUST ESTIMATION; VARIANCE; DESIGN; DISTRIBUTIONS; PARAMETERS;
D O I
10.1080/02331880903043223
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a novel estimator of Mahalanobis distance D2 between two non-normal populations. We show that it is enormously more efficient and robust than the traditional estimator based on least squares estimators. We give a test statistic for testing that D2=0 and study its power and robustness properties.
引用
收藏
页码:275 / 290
页数:16
相关论文
共 50 条
  • [1] The consequences of non-normality
    Hip, I
    Lippert, T
    Neff, H
    Schilling, K
    Schroers, W
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2002, 106 : 1004 - 1006
  • [2] Non-normality numbers
    Dolecki, S
    Nogura, T
    Peirone, R
    Reed, GM
    TOPOLOGY PROCEEDINGS, VOL 27, NO 1, 2003, 2003, : 111 - 123
  • [3] Intercept-only Model under Non-normality
    Asma, Bouchafaa
    Khedidja, Djeddour-Djaballah
    Essalih, Benjrada Mohammed
    THAILAND STATISTICIAN, 2024, 22 (02): : 348 - 362
  • [4] ESTIMATION IN MULTIFACTOR POLYNOMIAL REGRESSION UNDER NON-NORMALITY
    Tiku, Moti L.
    Akkaya, Aysen D.
    PAKISTAN JOURNAL OF STATISTICS, 2010, 26 (01): : 49 - 68
  • [5] Option pricing under non-normality: A comparative analysis
    Mozumder S.
    Sorwar G.
    Dowd K.
    Review of Quantitative Finance and Accounting, 2013, 40 (2) : 273 - 292
  • [6] A robust alternative to the ratio estimator under non-normality
    Oral, Evrim
    Oral, Ece
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 930 - 936
  • [7] FDR CONTROL IN MULTIPLE TESTING UNDER NON-NORMALITY
    Jing, Bing-Yi
    Kong, Xin-Bing
    Zhou, Wang
    STATISTICA SINICA, 2014, 24 (04) : 1879 - 1899
  • [8] DISTRIBUTION OF T-STATISTIC UNDER NON-NORMALITY
    BOWMAN, KO
    BEAUCHAMP, JJ
    SHENTON, LR
    INTERNATIONAL STATISTICAL REVIEW, 1977, 45 (03) : 233 - &
  • [9] MANOVA for large hypothesis degrees of freedom under non-normality
    Gupta, Arjun K.
    Harrar, Solomon W.
    Fujikoshi, Yasunori
    TEST, 2008, 17 (01) : 120 - 137
  • [10] Non-normality in Neural Networks
    Kumar, Ankit
    Bouchard, Kristofer
    AI AND OPTICAL DATA SCIENCES III, 2022, 12019