Special Commentary: Using Clinical Decision Support Systems to Bring Predictive Models to the Glaucoma Clinic

被引:16
作者
Stagg, Brian C. [1 ,2 ]
Stein, Joshua D. [3 ,4 ,5 ]
Medeiros, Felipe A. [6 ]
Wirostko, Barbara [1 ]
Crandall, Alan [1 ]
Hartnett, M. Elizabeth [1 ]
Cummins, Mollie [7 ]
Morris, Alan [8 ]
Hess, Rachel [2 ,9 ]
Kawamoto, Kensaku [10 ]
机构
[1] Univ Utah, Dept Ophthalmol & Visual Sci, John Moran Eye Ctr, Salt Lake City, UT USA
[2] Univ Utah, Dept Populat Hlth Sci, Salt Lake City, UT USA
[3] Univ Michigan, Kellogg Eye Ctr, Ctr Eye Policy & Innovat, Dept Opthalmol & Visual Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Inst Healthcare Policy & Innovat, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Publ Hlth, Dept Hlth Management & Policy, Ann Arbor, MI 48109 USA
[6] Duke Univ, Duke Eye Ctr, Durham, NC USA
[7] Univ Utah, Coll Nursing, Salt Lake City, UT 84112 USA
[8] Univ Utah, Dept Internal Med, Div Resp Crit Care & Occupat Pulm Med, Salt Lake City, UT 84112 USA
[9] Univ Utah, Dept Internal Med, Salt Lake City, UT 84112 USA
[10] Univ Utah, Dept Biomed Informat, Salt Lake City, UT USA
来源
OPHTHALMOLOGY GLAUCOMA | 2021年 / 4卷 / 01期
基金
美国国家卫生研究院;
关键词
glaucoma; clinical decision support; predictive modeling; machine learning; artificial intelligence; INTERVENTIONS; DESIGN; IMPLEMENTATION; INFORMATION; PROGRESSION; PHYSICIANS; MEDICINE; PLATFORM; ADOPTION; SUCCESS;
D O I
10.1016/j.ogla.2020.08.006
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Advances in the field of predictive modeling using artificial intelligence and machine learning have the potential to improve clinical care and outcomes, but only if the results of these models are presented appropriately to clinicians at the time they make decisions for individual patients. Clinical decision support (CDS) systems could be used to accomplish this. Modern CDS systems are computer-based tools designed to improve clinician decision making for individual patients. However, not all CDS systems are effective. Four principles that have been shown in other medical fields to be important for successful CDS system implementation are (1) integration into clinician workflow, (2) user-centered interface design, (3) evaluation of CDS systems and rules, and (4) standards-based development so the tools can be deployed across health systems. (C) 2020 by the American Academy of Ophthalmology
引用
收藏
页码:5 / 9
页数:5
相关论文
共 66 条
[1]   Machine Learning-Based Predictive Modeling of Surgical Intervention in Glaucoma Using Systemic Data From Electronic Health Records [J].
Baxter, Sally L. ;
Marks, Charles ;
Kuo, Tsung-Ting ;
Ohno-Machado, Lucila ;
Weinreb, Robert N. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 208 :30-40
[2]  
Berner ES, 2016, HEALTH INFORM SER, P1, DOI 10.1007/978-3-319-31913-1_1
[3]   Use of Computerized Clinical Decision Support Systems to Prevent Venous Thromboembolism in Surgical Patients A Systematic Review and Meta-analysis [J].
Borab, Zachary M. ;
Lanni, Michael A. ;
Tecce, Michael G. ;
Pannucci, Christopher J. ;
Fischer, John P. .
JAMA SURGERY, 2017, 152 (07) :638-645
[4]   Effect of Clinical Decision-Support Systems A Systematic Review [J].
Bright, Tiffani J. ;
Wong, Anthony ;
Dhurjati, Ravi ;
Bristow, Erin ;
Bastian, Lori ;
Coeytaux, Remy R. ;
Samsa, Gregory ;
Hasselblad, Vic ;
Williams, John W. ;
Musty, Michael D. ;
Wing, Liz ;
Kendrick, Amy S. ;
Sanders, Gillian D. ;
Lobach, David .
ANNALS OF INTERNAL MEDICINE, 2012, 157 (01) :29-U77
[5]   User-centered design to improve clinical decision support in primary care [J].
Brunner, Julian ;
Chuang, Emmeline ;
Goldzweig, Caroline ;
Cain, Cindy L. ;
Sugar, Catherine ;
Yano, Elizabeth M. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 104 :56-64
[6]   Retinal Nerve Fiber Layer Features Identified by Unsupervised Machine Learning on Optical Coherence Tomography Scans Predict Glaucoma Progression [J].
Christopher, Mark ;
Belghith, Akram ;
Weinreb, Robert N. ;
Bowd, Christopher ;
Goldbaum, Michael H. ;
Saunders, Luke J. ;
Medeiros, Felipe A. ;
Zangwill, Linda M. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (07) :2748-2756
[7]  
Crabb DP, 2014, HLTH SERV DELIV RES, V2
[8]   The effectiveness of computerised decision support on antibiotic use in hospitals: A systematic review [J].
Curtis, Christopher E. ;
Al Bahar, Fares ;
Marriott, John F. .
PLOS ONE, 2017, 12 (08)
[9]   A Validated Risk Calculator to Assess Risk and Rate of Visual Field Progression in Treated Glaucoma Patients [J].
De Moraes, Carlos Gustavo ;
Sehi, Mitra ;
Greenfield, David S. ;
Chung, Yun S. ;
Ritch, Robert ;
Liebmann, Jeffrey M. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (06) :2702-2707
[10]   Standards-Based Clinical Decision Support Platform to Manage Patients Who Meet Guideline-Based Criteria for Genetic Evaluation of Familial Cancer [J].
Del Fiol, Guilherme ;
Kohlmann, Wendy ;
Bradshaw, Richard L. ;
Weir, Charlene R. ;
Flynn, Michael ;
Hess, Rachel ;
Schiffman, Joshua D. ;
Nanjo, Claude ;
Kawamoto, Kensaku .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :1-9