Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions

被引:60
作者
Hao, Ji [1 ]
Kim, Young-Hoon [1 ]
Habisreutinger, Severin N. [1 ]
Harvey, Steven P. [1 ]
Miller, Elisa M. [1 ]
Foradori, Sean M. [2 ]
Arnold, Michael S. [2 ]
Song, Zhaoning [3 ]
Yan, Yanfa [3 ]
Luther, Joseph M. [1 ]
Blackburn, Jeffrey L. [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
[3] Univ Toledo, 2801 W Bancroft St, Toledo, OH 43606 USA
基金
美国国家科学基金会;
关键词
ION MIGRATION; CHARGE-TRANSFER; PERSISTENT PHOTOCONDUCTIVITY; PHASE SEGREGATION; CARBON NANOTUBES; SINGLE-CRYSTALS; LIGHT; TRANSITION; PHOTOTRANSISTORS; PHOTODETECTORS;
D O I
10.1126/sciadv.abf1959
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-lived photon-stimulated conductance changes in solid-state materials can enable optical memory and brain-inspired neuromorphic information processing. It remains challenging to realize optical switching with low-energy consumption, and new mechanisms and design principles giving rise to persistent photoconductivity (PPC) can help overcome an important technological hurdle. Here, we demonstrate versatile heterojunctions between metal-halide perovskite nanocrystals and semiconducting single-walled carbon nanotubes that enable room-temperature, long-lived (thousands of seconds), writable, and erasable PPC. Optical switching and basic neuromorphic functions can be stimulated at low operating voltages with femto- to pico-joule energies per spiking event, and detailed analysis demonstrates that PPC in this nanoscale interface arises from field-assisted control of ion migration within the nanocrystal array. Contactless optical measurements also suggest these systems as potential candidates for photonic synapses that are stimulated and read in the optical domain. The tunability of PPC shown here holds promise for neuromorphic computing and other technologies that use optical memory.
引用
收藏
页数:11
相关论文
共 74 条
[41]   Ultrasensitive flexible broadband photodetectors achieving pA scale dark current [J].
Luo, Xiao ;
Zhao, Feiyu ;
Du, Lili ;
Lv, Wenli ;
Xu, Kun ;
Peng, Yingquan ;
Wang, Ying ;
Lu, Feiping .
NPJ FLEXIBLE ELECTRONICS, 2017, 1 (01)
[42]   Solution-Processed Mixed-Dimensional Hybrid Perovskite/Carbon Nanotube Electronics [J].
Ma, Chun ;
Clark, Sarah ;
Liu, Zhixiong ;
Liang, Liangliang ;
Firdaus, Yuliar ;
Tao, Ran ;
Han, Ali ;
Liu, Xiaogang ;
Li, Lain Jong ;
Anthopoulos, Thomas D. ;
Hersam, Mark C. ;
Wu, Tom .
ACS NANO, 2020, 14 (04) :3969-3979
[43]   Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice [J].
Pradhan, Basudev ;
Das, Sonali ;
Li, Jinxin ;
Chowdhury, Farzana ;
Cherusseri, Jayesh ;
Pandey, Deepak ;
Dev, Durjoy ;
Krishnaprasad, Adithi ;
Barrios, Elizabeth ;
Towers, Andrew ;
Gesquiere, Andre ;
Tetard, Laurene ;
Roy, Tania ;
Thomas, Jayan .
SCIENCE ADVANCES, 2020, 6 (07)
[44]   A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device [J].
Qian, Liu ;
Sun, Yilin ;
Wu, Mingmao ;
Li, Chun ;
Xie, Dan ;
Ding, Liming ;
Shi, Gaoquan .
NANOSCALE, 2018, 10 (15) :6837-6843
[45]   A light-stimulated synaptic device based on graphene hybrid phototransistor [J].
Qin, Shuchao ;
Wang, Fengqiu ;
Liu, Yujie ;
Wan, Qing ;
Wang, Xinran ;
Xu, Yongbing ;
Shi, Yi ;
Wang, Xiaomu ;
Zhang, Rong .
2D MATERIALS, 2017, 4 (03)
[46]   Quantitative analysis of time-resolved microwave conductivity data [J].
Reid, Obadiah G. ;
Moore, David T. ;
Li, Zhen ;
Zhao, Dewei ;
Yan, Yanfa ;
Zhu, Kai ;
Rumbles, Garry .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (49)
[47]  
Ríos C, 2015, NAT PHOTONICS, V9, P725, DOI [10.1038/nphoton.2015.182, 10.1038/NPHOTON.2015.182]
[48]   Aerosol-Jet Printing of Polymer-Sorted (6,5) Carbon Nanotubes for Field-Effect Transistors with High Reproducibility [J].
Rother, Marcel ;
Brohmann, Maximilian ;
Yang, Shuyi ;
Grimm, Stefan B. ;
Schiessl, Stefan P. ;
Graf, Arko ;
Zaumseil, Jana .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (08)
[49]  
Roy K, 2013, NAT NANOTECHNOL, V8, P826, DOI [10.1038/nnano.2013.206, 10.1038/NNANO.2013.206]
[50]   Neuromorphic nanoelectronic materials [J].
Sangwan, Vinod K. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2020, 15 (07) :517-528