A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations

被引:88
|
作者
Ye, Kan [1 ]
Ji, J. C. [1 ]
Brown, Terry [1 ]
机构
[1] Univ Technol Sydney, Sch Mech & Mechatron Engn, 15 Broadway, Ultimo, NSW 2007, Australia
关键词
Translation-rotation; Coupled vibrations; Quasi-zero-stiffness; Nonlinear vibration isolator; Jump phenomenon;
D O I
10.1016/j.ymssp.2020.107340
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Quasi-zero stiffness (QZS) vibration isolators can provide better isolation performance in the low frequency range than linear vibration isolators. Currently, most of the designed QZS isolators perform vibration isolation only in one direction and few papers are focused on simultaneously isolating the vibrations in two directions. In this paper, an integrated translational-rotational QZS vibration isolator is designed by using the cam-roller mechanism. The proposed QZS system is able to provide the high-static-low-dynamic stiffness in two directions simultaneously. The excitations in both translational and rotational directions are considered independent but with mutual interaction to their induced vibration response. The workable ranges of the QZS system and its limitations are first numerically identified. Then the static characteristics and typical nonlinear dynamic response with jump phenomena are theoretically investigated. The jump-down frequencies for small amplitude oscillations are determined from their amplitude-frequency relationships. Furthermore, the force transmissibility and moment transmissibility of the proposed QZS system are compared with those of the corresponding linear system without the camroller mechanism, which clearly demonstrate better isolation performance in both translational and rotational directions. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A torsion–translational vibration isolator with quasi-zero stiffness
    Qianlong Zhang
    Shuyan Xia
    Daolin Xu
    Zhike Peng
    Nonlinear Dynamics, 2020, 99 : 1467 - 1488
  • [2] A torsion-translational vibration isolator with quasi-zero stiffness
    Zhang, Qianlong
    Xia, Shuyan
    Xu, Daolin
    Peng, Zhike
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1467 - 1488
  • [3] A torsion quasi-zero stiffness vibration isolator
    Zhou, Jiaxi
    Xu, Daolin
    Bishop, Steven
    JOURNAL OF SOUND AND VIBRATION, 2015, 338 : 121 - 133
  • [4] The Design and Analysis of a Novel Passive Quasi-Zero Stiffness Vibration Isolator
    Xinghua Zhou
    Xiao Sun
    Dingxuan Zhao
    Xiao Yang
    Kehong Tang
    Journal of Vibration Engineering & Technologies, 2021, 9 : 225 - 245
  • [5] The Design and Analysis of a Novel Passive Quasi-Zero Stiffness Vibration Isolator
    Zhou, Xinghua
    Sun, Xiao
    Zhao, Dingxuan
    Yang, Xiao
    Tang, Kehong
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2021, 9 (02) : 225 - 245
  • [6] Novel modular quasi-zero stiffness vibration isolator with high linearity and integrated fluid damping
    Zhang, Wei
    Che, Jixing
    Huang, Zhiwei
    Gao, Ruiqi
    Jiang, Wei
    Chen, Xuedong
    Wu, Jiulin
    FRONTIERS OF MECHANICAL ENGINEERING, 2024, 19 (01)
  • [7] Research on a nonlinear quasi-zero stiffness vibration isolator with a vibration absorber
    Li, Shao-Hua
    Liu, Nan
    Ding, Hu
    SCIENCE PROGRESS, 2020, 103 (03)
  • [8] An Archetypal Vibration Isolator with Quasi-zero Stiffness in Multiple Directions
    Zhu, Guangnan
    Lu, Kuan
    Cao, Qingjie
    Chen, Yushu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (02) : 190 - 203
  • [9] A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic
    Kovacic, Ivana
    Brennan, Michael J.
    Waters, Timothy P.
    JOURNAL OF SOUND AND VIBRATION, 2008, 315 (03) : 700 - 711
  • [10] Design and Analysis of Electromagnetic Quasi-zero Stiffness Vibration Isolator
    Wang MengTong
    Su Pan
    Liu ShuYong
    Chai Kai
    Wang BoXiang
    Lu Jinfang
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (01) : 153 - 164