Well-posedness and analytic solutions of the two-component Euler-Poincare system

被引:34
作者
Li, Jinlu [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 183卷 / 03期
关键词
The two-component Euler-PoincarE system; Local well-posedness; Blow-up criterion; Analytic solutions; CAMASSA-HOLM EQUATION; GLOBAL WEAK SOLUTIONS; CAUCHY-PROBLEM; WAVE-BREAKING; EXISTENCE; BLOWUP;
D O I
10.1007/s00605-016-0927-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first establish the local well-posedness for the Cauchy problem of the two-component Euler-Poincar, system in nonhomogeneous Besov spaces. Then, we derive a blow-up criterion for strong solutions to the system. Finally, we prove the existence of analytic solutions to the system.
引用
收藏
页码:509 / 537
页数:29
相关论文
共 33 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]  
Baouendi M.S., 1977, COMMUN PART DIFF EQ, V2, P1151
[3]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[4]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[5]   Blow-up, Zero α Limit and the Liouville Type Theorem for the Euler-Poincar, Equations [J].
Chae, Dongho ;
Liu, Jian-Guo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 314 (03) :671-687
[6]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[7]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[8]  
2-5
[9]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[10]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61