When Does Communication Learning Need Hierarchical Multi-Agent Deep Reinforcement Learning

被引:2
|
作者
Ossenkopf, Marie [1 ]
Jorgensen, Mackenzie [2 ]
Geihs, Kurt [1 ]
机构
[1] Univ Kassel, Distributed Syst Grp, Wilhelmshoeher Allee 73, D-34121 Kassel, Germany
[2] Villanova Univ, Comp Sci, Villanova, PA 19085 USA
关键词
Agent communication; deep reinforcement learning; hierarchical learning; multi-agent systems;
D O I
10.1080/01969722.2019.1677335
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-agent systems need to communicate to coordinate a shared task. We show that a recurrent neural network (RNN) can learn a communication protocol for coordination, even if the actions to coordinate are performed steps after the communication phase. We show that a separation of tasks with different temporal scale is necessary for successful learning. We contribute a hierarchical deep reinforcement learning model for multi-agent systems that separates the communication and coordination task from the action picking through a hierarchical policy. We further on show, that a separation of concerns in communication is beneficial but not necessary. As a testbed, we propose the Dungeon Lever Game and we extend the Differentiable Inter-Agent Learning (DIAL) framework. We present and compare results from different model variations on the Dungeon Lever Game.
引用
收藏
页码:672 / 692
页数:21
相关论文
共 50 条
  • [21] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [22] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Yi Liu
    Xiang Wu
    Yuming Bo
    Jiacun Wang
    Lifeng Ma
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [23] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Liu, Yi
    Wu, Xiang
    Bo, Yuming
    Wang, Jiacun
    Ma, Lifeng
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (11) : 2346 - 2348
  • [24] Hierarchical Multi-Agent Deep Reinforcement Learning for SFC Placement on Multiple Domains
    Toumi, Nassima
    Bagaa, Miloud
    Ksentini, Adlen
    PROCEEDINGS OF THE IEEE 46TH CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN 2021), 2021, : 299 - 304
  • [25] Studies on hierarchical reinforcement learning in multi-agent environment
    Yu Lasheng
    Marin, Alonso
    Hong Fei
    Lin Jian
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1714 - 1720
  • [26] Multi-Agent Hierarchical Reinforcement Learning with Dynamic Termination
    Han, Dongge
    Boehmer, Wendelin
    Wooldridge, Michael
    Rogers, Alex
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2006 - 2008
  • [27] Multi-agent hierarchical reinforcement learning for energy management
    Jendoubi, Imen
    Bouffard, Francois
    APPLIED ENERGY, 2023, 332
  • [28] Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination
    Han, Dongge
    Bohmer, Wendelin
    Wooldridge, Michael
    Rogers, Alex
    PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11671 : 80 - 92
  • [29] Hierarchical Multi-Agent Training Based on Reinforcement Learning
    Wang, Guanghua
    Li, Wenjie
    Wu, Zhanghua
    Guo, Xian
    2024 9TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS, ACIRS, 2024, : 11 - 18
  • [30] Air-Ground Coordination Communication by Multi-Agent Deep Reinforcement Learning
    Ding, Ruijin
    Gao, Feifei
    Yang, Guanghua
    Shen, Xuemin Sherman
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,