Evans functions for periodic waves on infinite cylindrical domains

被引:13
作者
Oh, Myunghyun [1 ]
Sandstede, Bjoern [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
TRAVELING WAVES; SOLITARY WAVES; STABILITY; INSTABILITY; EQUATIONS; SPECTRA;
D O I
10.1016/j.jde.2009.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Galerkin approximations, an Evans function for spatially periodic waves on infinite cylindrical domains is constructed. It is also shown that the Evans function can be used to define a parity index for periodic waves that detects whether the wave admits an odd number of real unstable eigenvalues. This parity index depends only on local information for the existence problem of the wave: in particular, it uses information about the linear dispersion relation near zero and the orientability of the unstable and stable manifolds along the nonlinear wave. The results are applied to small-amplitude wave trains for a scalar equation on an infinite strip. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:544 / 555
页数:12
相关论文
共 20 条
[1]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[2]   Instability of spatially-periodic states for a family of semilinear PDE's on an infinite strip [J].
Bridges, TJ ;
Mielke, A .
MATHEMATISCHE NACHRICHTEN, 1996, 179 :5-25
[3]  
BRONSKI JC, 2008, MODULATIONAL INSTABI
[4]  
DENG J, 2006, J DIFFER EQUATIONS, V225, P57
[5]   NERVE AXON EQUATIONS .3. STABILITY OF NERVE IMPULSE [J].
EVANS, JW .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (06) :577-593
[6]  
GARDNER RA, 1993, J MATH PURE APPL, V72, P415
[7]  
Gardner RA, 1997, J REINE ANGEW MATH, V491, P149
[8]  
Gardner RA, 1998, COMMUN PUR APPL MATH, V51, P797, DOI 10.1002/(SICI)1097-0312(199807)51:7<797::AID-CPA3>3.0.CO
[9]  
2-1
[10]  
HARAGUS M, 2008, PHYS D, V237