Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity

被引:25
作者
He, Yuchen R. [1 ,2 ]
He, Shenghua [4 ]
Kandel, Mikhail E. [1 ,2 ]
Lee, Young Jae [2 ,3 ]
Hu, Chenfei [1 ,2 ]
Sobh, Nahil [2 ,5 ]
Anastasio, Mark A. [6 ,7 ]
Popescu, Gabriel [6 ,7 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[3] Univ Illinois, Neurosci Program, Urbana, IL 61801 USA
[4] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA
[5] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
deep learning; quantitative phase imaging; cell cycle; phase imaging with computational specificity; MICROSCOPY; SEGMENTATION; TOMOGRAPHY; MASS;
D O I
10.1021/acsphotonics.1c01779
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional methods for cell cycle stage classification rely heavily on fluorescence microscopy to monitor nuclear dynamics. These methods inevitably face the typical phototoxicity and photobleaching limitations of fluorescence imaging. Here, we present a cell cycle detection workflow using the principle of phase imaging with computational specificity (PICS). The proposed method uses neural networks to extract cell cycle-dependent features from quantitative phase imaging (QPI) measurements directly. Our results indicate that this approach attains very good accuracy in classifying live cells into G1, S, and G2/M stages, respectively. We also demonstrate that the proposed method can be applied to study single-cell dynamics within the cell cycle as well as cell population distribution across different stages of the cell cycle. We envision that the proposed method can become a nondestructive tool to analyze cell cycle progression in fields ranging from cell biology to biopharma applications.
引用
收藏
页码:1264 / 1273
页数:10
相关论文
共 60 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] Eff-UNet: A Novel Architecture for Semantic Segmentation in Unstructured Environment
    Baheti, Bhakti
    Innani, Shubham
    Gajre, Suhas
    Talbar, Sanjay
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1473 - 1481
  • [3] On the use of deep learning for computational imaging
    Barbastathis, George
    Ozcan, Aydogan
    Situ, Guohai
    [J]. OPTICA, 2019, 6 (08): : 921 - 943
  • [4] INTERFERENCE MICROSCOPY AND MASS DETERMINATION
    BARER, R
    [J]. NATURE, 1952, 169 (4296) : 366 - 367
  • [5] Quantification of nanoscale nuclear refractive index changes during the cell cycle
    Bista, Rajan K.
    Uttam, Shikhar
    Wang, Pin
    Staton, Kevin
    Choi, Serah
    Bakkenist, Christopher J.
    Hartman, Douglas J.
    Brand, Randall E.
    Liu, Yang
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (07)
  • [6] Cell refractive index tomography by digital holographic microscopy
    Charrière, F
    Marian, A
    Montfort, F
    Kuehn, J
    Colomb, T
    Cuche, E
    Marquet, P
    Depeursinge, C
    [J]. OPTICS LETTERS, 2006, 31 (02) : 178 - 180
  • [7] Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
  • [8] Tomographic phase microscopy
    Choi, Wonshik
    Fang-Yen, Christopher
    Badizadegan, Kamran
    Oh, Seungeun
    Lue, Niyom
    Dasari, Ramachandra R.
    Feld, Michael S.
    [J]. NATURE METHODS, 2007, 4 (09) : 717 - 719
  • [9] Cell cycle phase classification in 3D in vivo microscopy of Drosophila embryogenesis
    Du, Tie Hua
    Puah, Wee Choo
    Wasser, Martin
    [J]. BMC BIOINFORMATICS, 2011, 12
  • [10] DUNN GA, 1995, J CELL SCI, V108, P1239