Determinant structure of the rational solutions for the Painleve IV equation

被引:56
作者
Kajiwara, K [1 ]
Ohta, Y
机构
[1] Doshisha Univ, Dept Elect Engn, Kyoto 61003, Japan
[2] Hiroshima Univ, Fac Engn, Dept Appl Math, Higashihiroshima 739, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 10期
关键词
D O I
10.1088/0305-4470/31/10/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rational solutions for the Painleve IV equation are investigated by Hirota bilinear formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur functions, and those in another two hierarchies by Casorati determinants of the Hermite polynomials, or by a special case of the Schur polynomials.
引用
收藏
页码:2431 / 2446
页数:16
相关论文
共 21 条
[1]   NEW EXACT-SOLUTIONS OF THE DISCRETE 4TH PAINLEVE EQUATION [J].
BASSOM, AP ;
CLARKSON, PA .
PHYSICS LETTERS A, 1994, 194 (5-6) :358-370
[2]  
BASSOM AP, 1995, STUD APPL MATH, V95, P1
[3]   NEW SIMILARITY SOLUTIONS FOR THE MODIFIED BOUSSINESQ EQUATION [J].
CLARKSON, PA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13) :2355-2367
[4]  
FOKAS AS, 1988, PHYSICA D, V30, P243
[5]  
GROMAK VI, 1987, DIFF EQUAT+, V23, P506
[6]  
Hirota R., 1976, Progress of Theoretical Physics Supplement, P64, DOI 10.1143/PTPS.59.64
[7]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[8]   Determinant structure of the rational solutions for the Painleve II equation [J].
Kajiwara, K ;
Ohta, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) :4693-4704
[9]   LINEARIZATION OF THE CLASSICAL BOUSSINESQ AND RELATED EQUATIONS [J].
KAWAMOTO, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (09) :2922-2929
[10]  
LEVI D, 1992, NATO ADV STUDY I B, V278, P175