ROBUST PRECONDITIONING ESTIMATES FOR CONVECTION-DOMINATED ELLIPTIC PROBLEMS VIA A STREAMLINE POINCARE-FRIEDRICHS INEQUALITY

被引:2
作者
Axelsson, Owe [1 ]
Karatson, Janos [2 ,3 ,4 ]
Kovacs, Balazs [2 ,3 ]
机构
[1] Inst Geon AS CR, Innovat IT4, Ostrava, Czech Republic
[2] ELTE Univ, Dept Appl Anal, H-1518 Budapest, Hungary
[3] ELTE Univ, MTA ELTE NumNet Res Grp, H-1518 Budapest, Hungary
[4] Tech Univ Budapest, Dept Anal, Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
streamline diffusion finite element method; robust preconditioning; Poincare-Friedrichs inequality; ITERATIVE METHODS; NONSYMMETRIC SYSTEMS; CONJUGATE-GRADIENT; DIFFUSION PROBLEMS; LINEAR-EQUATIONS;
D O I
10.1137/130940268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the streamline diffusion finite element method, combined with equivalent preconditioning, for solving convection-dominated elliptic problems. The preconditioner is obtained from the streamline diffusion inner product. It is proved that the obtained convergence is robust, i.e., bounded independently of the perturbation parameter e, for proper convection vector fields. The key to the estimates is an improved "streamline" Poincare-Friedrichs inequality.
引用
收藏
页码:2957 / 2976
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1996, Applied Mathematics and Mathematical Computation
[2]  
Arnold Vladimir, 1992, Ordinary Differential Equations
[3]  
AXELSSON O, 1989, NUMER MATH, V56, P157, DOI 10.1007/BF01409783
[4]   ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS .2. [J].
AXELSSON, O ;
VASSILEVSKI, PS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1569-1590
[5]   A GENERALIZED CONJUGATE-GRADIENT, LEAST-SQUARE METHOD [J].
AXELSSON, O .
NUMERISCHE MATHEMATIK, 1987, 51 (02) :209-227
[6]   Symmetric part preconditioning for the conjugate gradient method in Hilbert space [J].
Axelsson, O ;
Karátson, J .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (5-6) :455-474
[7]   Equivalent operator preconditioning for elliptic problems [J].
Axelsson, O. ;
Karatson, J. .
NUMERICAL ALGORITHMS, 2009, 50 (03) :297-380
[8]   THE LOCAL GREEN'S FUNCTION METHOD IN SINGULARLY PERTURBED CONVECTION-DIFFUSION PROBLEMS [J].
Axelsson, Owe ;
Glushkov, Evgeny ;
Glushkova, Natalya .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :153-170
[9]   Preconditioning CGNE iteration for inverse problems [J].
Egger, H. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (03) :183-196
[10]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357