Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source

被引:183
作者
Xu, YuHong [1 ]
Yin, GePing [1 ,2 ]
Ma, YuLin [1 ]
Zuo, PengJian [1 ]
Cheng, XinQun [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150001, Peoples R China
关键词
HIGH-CAPACITY ANODES; ALLOY COMPOSITE; COATED SILICON; SI; NANOCOMPOSITES; PERFORMANCE; INSERTION; STORAGE; TEMPERATURE; ELECTRODES;
D O I
10.1039/b921979j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A nanosized anode material for lithium ion batteries with silicon as core and amorphous carbon as shell was synthesized by dispersing nanosized silicon in polyvinylidene fluoride solution and a subsequent pyrolysis process. The amorphous nature of the carbon in the composite was detected by X-ray diffraction and Raman spectroscopy. The core/shell structure was further identified by transmission electron microscopy. High reversible capacity and acceptable rate capability were exhibited compared with pristine silicon. The reversible capacity of the silicon@carbon nanocomposite at 50 mA g(-1) after 30 cycles is 1290 mAh g(-1) with a capacity retention of 97%. A stable reversible capacity of 450 mAh g(-1) was delivered even at 1000 mA g(-1). These improvements are attributed to the amorphous carbon shell, which suppresses the agglomeration of nanosized silicon, reduces the cell impedance, buffers the volume changes and stabilizes the electrode structure during charge/discharge cycles.
引用
收藏
页码:3216 / 3220
页数:5
相关论文
共 37 条
[1]   Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes [J].
Baranchugov, V. ;
Markevich, E. ;
Pollak, E. ;
Salitra, G. ;
Aurbach, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) :796-800
[2]   Si electrodes for li-ion batteries - A new way to look at an old problem [J].
Beattie, S. D. ;
Larcher, D. ;
Morcrette, M. ;
Simon, B. ;
Tarascon, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A158-A163
[3]   Surface-modified graphite as an improved intercalating anode for lithium-ion batteries [J].
Cao, YL ;
Xiao, LF ;
Ai, XP ;
Yang, HX .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (02) :A30-A33
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[6]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[7]   Improvement of cyclability of Si as anode for Li-ion batteries [J].
Ding, Ning ;
Xu, Jing ;
Yao, Yaxuan ;
Wegner, Gerhard ;
Lieberwirth, Ingo ;
Chen, Chunhua .
JOURNAL OF POWER SOURCES, 2009, 192 (02) :644-651
[8]   Structural and electrochemical characterization of Fe-Si/C composite anodes for Li-ion batteries synthesized by mechanical alloying [J].
Dong, H ;
Feng, RX ;
Ai, XP ;
Cao, YL ;
Yang, HX .
ELECTROCHIMICA ACTA, 2004, 49 (28) :5217-5222
[9]   Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries [J].
Dong, H ;
Ai, XP ;
Yang, HX .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) :952-957
[10]   Highly reversible lithium storage in nanostructured silicon [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (09) :A194-A197