Computational design of G Protein-Coupled Receptor allosteric signal transductions

被引:60
作者
Chen, Kuang-Yui Michael [1 ,2 ,5 ]
Keri, Daniel [1 ]
Barth, Patrick [1 ,2 ,3 ,4 ]
机构
[1] Swiss Fed Inst Technol EPFL, Inst Bioengn, Lausanne, Switzerland
[2] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Pharmacol, Houston, TX 77030 USA
[4] Baylor Coll Med, Struct & Computat Biol & Mol Biophys Grad Program, Houston, TX 77030 USA
[5] Univ Calif Davis, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
关键词
CONSTITUTIVE ACTIVATION; DIRECTED EVOLUTION; CRYSTAL-STRUCTURE; OPIOID RECEPTOR; GLYCINE; 121; COMMUNICATION; STABILITY; COOPERATIVITY; DETERMINANTS; EXPRESSION;
D O I
10.1038/s41589-019-0407-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membrane receptors sense and transduce extracellular stimuli into intracellular signaling responses but the molecular underpinnings remain poorly understood. We report a computational approach for designing protein allosteric signaling functions. By combining molecular dynamics simulations and design calculations, the method engineers amino-acid 'microswitches' at allosteric sites that modulate receptor stability or long-range coupling, to reprogram specific signaling properties. We designed 36 dopamine D2 receptor variants, whose constitutive and ligand-induced signaling agreed well with our predictions, repurposed the D2 receptor into a serotonin biosensor and predicted the signaling effects of more than 100 known G-protein-coupled receptor (GPCR) mutations. Our results reveal the existence of distinct classes of allosteric microswitches and pathways that define an unforeseen molecular mechanism of regulation and evolution of GPCR signaling. Our approach enables the rational design of allosteric receptors with enhanced stability and function to facilitate structural characterization, and reprogram cellular signaling in synthetic biology and cell engineering applications.
引用
收藏
页码:77 / +
页数:13
相关论文
共 53 条
[1]   Multiple Switches in G Protein-Coupled Receptor Activation [J].
Ahuja, Shivani ;
Smith, Steven O. .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2009, 30 (09) :494-502
[2]   Global Dynamics of Proteins: Bridging Between Structure and Function [J].
Bahar, Ivet ;
Lezon, Timothy R. ;
Yang, Lee-Wei ;
Eyal, Eran .
ANNUAL REVIEW OF BIOPHYSICS, VOL 39, 2010, 39 :23-42
[3]  
Ballesteros J.A., 1995, Methods Neurosci, V25, P366, DOI DOI 10.1016/S1043-9471(05)80049-7
[4]   Toward high-resolution prediction and design of transmembrane helical protein structures [J].
Barth, P. ;
Schonbrun, J. ;
Baker, D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (40) :15682-15687
[5]   Constitutive activation of the δ opioid receptor by mutations in transmembrane domains III and VII [J].
Befort, K ;
Zilliox, C ;
Filliol, D ;
Yue, SY ;
Kieffer, BL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18574-18581
[6]   Differences in Allosteric Communication Pipelines in the Inactive and Active States of a GPCR [J].
Bhattacharya, Supriyo ;
Vaidehi, Nagarajan .
BIOPHYSICAL JOURNAL, 2014, 107 (02) :422-434
[7]   Structure of the adenosine A2A receptor bound to an engineered G protein [J].
Carpenter, Byron ;
Nehme, Rony ;
Warne, Tony ;
Leslie, Andrew G. W. ;
Tate, Christopher G. .
NATURE, 2016, 536 (7614) :104-+
[8]   Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the δ-opioid receptor [J].
Cavalli, A ;
Babey, AM ;
Loh, HH .
NEUROSCIENCE, 1999, 93 (03) :1025-1031
[9]   High-Resolution Modeling of Transmembrane Helical Protein Structures from Distant Homologues [J].
Chen, Kuang-Yui M. ;
Sun, Jiaming ;
Salvo, Jason S. ;
Baker, David ;
Barth, Patrick .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (05)
[10]   Naturally evolved G protein-coupled receptors adopt metastable conformations [J].
Chen, Kuang-Yui Michael ;
Zhou, Fuguo ;
Fryszczyn, Bartlomiej G. ;
Barth, Patrick .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (33) :13284-13289