Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times

被引:125
作者
Hackmann, Eva [1 ]
Laemmerzahl, Claus [1 ]
Kagramanova, Valeria [2 ]
Kunz, Jutta [2 ]
机构
[1] Univ Bremen, ZARM, D-28359 Bremen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 04期
关键词
KERR; ORBITS; SYSTEM;
D O I
10.1103/PhysRevD.81.044020
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The complete analytical solutions of the geodesic equations in Kerr-de Sitter and Kerr-anti-de Sitter space-times are presented. They are expressed in terms of Weierstrass elliptic phi, zeta, and sigma functions as well as hyperelliptic Kleinian sigma functions restricted to the one-dimensional theta divisor. We analyze the dependency of timelike geodesics on the parameters of the space-time metric and the test-particle and compare the results with the situation in Kerr space-time with vanishing cosmological constant. Furthermore, we systematically can find all last stable spherical and circular orbits and derive the expressions of the deflection angle of flyby orbits, the orbital frequencies of bound orbits, the periastron shift, and the Lense-Thirring effect.
引用
收藏
页数:20
相关论文
共 37 条
  • [1] Study of the anomalous acceleration of Pioneer 10 and 11
    Anderson, JD
    Laing, PA
    Lau, EL
    Liu, AS
    Nieto, MM
    Turyshev, SG
    [J]. PHYSICAL REVIEW D, 2002, 65 (08) : 820041 - 8200450
  • [2] BAKER H, 1907, MULTIPLY PERIODIC FU
  • [3] Inhomogeneous high frequency expansion-free gravitational waves
    Barrabes, C.
    Hogan, P. A.
    [J]. PHYSICAL REVIEW D, 2007, 75 (12):
  • [4] BUCHSTABER VM, 1997, REV MATH MATH PHYS, V10
  • [5] GLOBAL STRUCTURE OF KERR FAMILY OF GRAVITATIONAL FIELDS
    CARTER, B
    [J]. PHYSICAL REVIEW, 1968, 174 (05): : 1559 - +
  • [6] Chandrasekhar S., 1985, The Mathematical Theory of Black Holes
  • [7] Dragging of inertial frames
    Ciufolini, Ignazio
    [J]. NATURE, 2007, 449 (7158) : 41 - 47
  • [8] Coalescence of two spinning black holes: An effective one-body approach
    Damour, T
    [J]. PHYSICAL REVIEW D, 2001, 64 (12)
  • [9] Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling
    Damour, Thibault
    Jaranowski, Piotr
    Schaefer, Gerhard
    [J]. PHYSICAL REVIEW D, 2008, 77 (06):
  • [10] Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling
    Damour, Thibault
    Jaranowski, Piotr
    Schaefer, Gerhard
    [J]. PHYSICAL REVIEW D, 2008, 78 (02):