Hypercyclic composition operators on the little Bloch space and the Besov spaces

被引:6
作者
Liang, Yu-Xia [1 ]
Zhou, Ze-Hua [1 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2018年 / 29卷 / 03期
基金
中国国家自然科学基金;
关键词
Hypercyclic; Composition operator; Bloch space; Besov space; INVARIANT;
D O I
10.1016/j.indag.2018.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(D) be the collection of all holomorphic self-maps on D of the complex plane C, and C-phi the composition operator induced by phi is an element of S(D). We obtain that there are no hypercyclic composition operators on the little Bloch space B-0 and the Besov space B-p. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:986 / 996
页数:11
相关论文
共 23 条
[1]  
[Anonymous], DYNAMICS LINEAR OPER
[2]  
[Anonymous], 2005, GRADUATE TEXTS MATH
[3]  
ARAZY J, 1984, LECT NOTES MATH, V1070, P24
[4]   THE UNIQUENESS OF THE DIRICHLET SPACE AMONG MOBIUS-INVARIANT HILBERT-SPACES [J].
ARAZY, J ;
FISHER, SD .
ILLINOIS JOURNAL OF MATHEMATICS, 1985, 29 (03) :449-462
[5]  
Bourdon P.S., 1990, Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988), V51, P43
[6]  
Bourdon PS, 1997, MEM AM MATH SOC, V125, P1
[7]  
Cowen C., 1995, Composition operators on spaces of analytic functions
[8]  
Gallardo-Gutierrez E. A., 2004, MEM AM MATH SOC
[9]   UNIVERSAL VECTORS FOR OPERATORS ON SPACES OF HOLOMORPHIC-FUNCTIONS [J].
GETHNER, RM ;
SHAPIRO, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) :281-288
[10]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269