An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 x 4 Lax pair on the half-line

被引:50
作者
Yan, Zhenya [1 ,2 ]
机构
[1] Chinese Acad Sci, Key Lab Math Mechanizat, Inst Syst Sci, AMSS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
NONLINEAR SCHRODINGER-EQUATION; UNIFIED TRANSFORM METHOD; STEEPEST DESCENT METHOD; SINE-GORDON EQUATION; EVOLUTION-EQUATIONS; CONFINEMENT;
D O I
10.1063/1.4984025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the idea of the Fokas unified transform to investigate the initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4 x 4 Lax pair on the half-line. The solution of this system can be expressed in terms of the solution of a 4 x 4 matrix Riemann-Hilbert (RH) problem formulated in the complex k-plane. The relevant jump matrices of the RH problem can be explicitly found using the two spectral functions s(k) and S(k), which can be defined by the initial data, the Dirichlet-Neumann boundary data at x = 0. The global relation is established between the two dependent spectral functions. The general mappings between Dirichlet and Neumann boundary values are analyzed in terms of the global relation. These results may be of the potential significance in both spinor Bose-Einstein condensates and the theory of multi-component integrable systems. Published by AIP Publishing.
引用
收藏
页数:21
相关论文
共 45 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], 2006, NONLINEAR FIBER OPTI
[5]   On the Nonlinear Schrodinger Equation on the Half Line with Homogeneous Robin Boundary Conditions [J].
Biondini, G. ;
Bui, A. .
STUDIES IN APPLIED MATHEMATICS, 2012, 129 (03) :249-271
[6]   Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates -: art. no. 140403 [J].
Chang, MS ;
Hamley, CD ;
Barrett, MD ;
Sauer, JA ;
Fortier, KM ;
Zhang, W ;
You, L ;
Chapman, MS .
PHYSICAL REVIEW LETTERS, 2004, 92 (14) :140403-1
[7]   THE mKdV EQUATION ON THE HALF-LINE [J].
De Monvel, A. Boutet ;
Fokas, A. S. ;
Shepelsky, D. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2004, 3 (02) :139-164
[8]   Integrable nonlinear evolution equations on a finite interval [J].
de Monvel, AB ;
Fokas, AS ;
Shepelsky, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) :133-172
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS [J].
DEIFT, P ;
ZHOU, X .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (01) :119-123
[10]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368