Colocalization of serotonin and GABA in retinal neurons of Ichthyophis kohtaoensis (Amphibia; Gymnophiona)

被引:0
|
作者
Dünker, N [1 ]
机构
[1] Tech Univ Darmstadt, Dept Zool, D-64287 Darmstadt, Germany
来源
ANATOMY AND EMBRYOLOGY | 1998年 / 197卷 / 01期
关键词
retina; amacrine cells; neurotransmitter; immunocytochemistry; double-labeling; Ichthyophis kohtaoensis (Gymnophiona);
D O I
暂无
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Ichthyophis kohtaoensis, a member of the limbless Gymnophiona, has a specialized subterranean burrowing mode of life and a predominantly olfactory-guided orientation. The only visually guided behavior seems to be negative phototaxis. As these animals possess extremely small eyes (only 540 mu m in diameter in adults), functional investigations of single retinal cells by electrophysiological methods have so far failed. Therefore, the content and distribution of retinal transmitters have been investigated as indications of a functioning sense organ in an animal that is supposed to be blind. Previous immunohistochemical investigation of the retinal transmitter system revealed immunoreactivity for gamma-aminobutyric acid (GABA), serotonin, dopamine and tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway. The present studies have been performed in order to determine a possible colocalization of serotonin and GABA in retinal neurons of the caecilian retina. Therefore retinal cryostat sections of various developmental stages have been investigated by the indirect fluorescence method. In single-label preparations, serotonin is localized to cells in the inner nuclear layer and the ganglion cell layer. GABA immunocytochemistry labels a variety of cell types in the inner nuclear layer as well as cell bodies in the ganglion cell layer. In double label preparations, some of the serotonergic cells are found to express GABA immunoreactivity and some GABAergic neurons also label for serotonin immunocytochemistry. Thus, despite the fact that caecilians mainly rely on olfaction and are believed to have a reduced visual system, their retina exhibits a surprisingly "normal" distribution of neurotransmitters and neuromodulators, also typical of other anamniotes with a well-developed visual system, including the partial colocalization of serotonin and GABA at all developmental stages of I. kohtaoensis. These results indicate that a functional system that is under no strong selective pressure obviously has a long evolutionary persistence irrespective of its need for use.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 20 条