A Variant of Hop Domination in Graphs

被引:4
作者
Canoy, Sergio R., Jr. [1 ]
Salasalan, Gemma P. [2 ]
机构
[1] MSU Iligan Inst Technol, Dept Math & Stat, Coll Sci & Math, Ctr Graph Theory Algebra & Anal PRISM, Iligan 9200, Philippines
[2] Davao Del Sur State Coll, Inst Arts & Sci, Dept Arts & Sci, Digos, Davao Del Sur, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2022年 / 15卷 / 02期
关键词
hop domination; super hop domination; complement-super domination; join; lexicographic product; SETS;
D O I
10.29020/nybg.ejpam.v15i2.4352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph with vertex and edge sets V (G) and E(G), respectively. A set S subset of V (G) is a hop dominating set of G if for each v is an element of V (G) \ S, there exists w is an element of S such that dG(v,w) = 2. A set S subset of V (G) is a super hop dominating set if ehpn(G)(v, V (G) \ S) not equal Phi for each v is an element of V (G) \ S, where ehpn(G)(v, V (G) \ S) is the set containing all the external hop private neighbors of v with respect to V (G) \ S. The minimum cardinality of a super hop dominating set of G, denoted by gamma(s)(h)(G), is called the super hop domination number of G. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the super hop dominating sets in the join, and lexicographic products of graphs, and determine bounds of the super hop domination number of each of these graphs.
引用
收藏
页码:342 / 353
页数:12
相关论文
共 13 条
[1]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[2]   Locating-Hop Domination in Graphs [J].
Canoy Jr, Sergio R. ;
Salasalan, Gemma P. .
KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (01) :193-204
[3]   Hop Dominating Sets in Graphs Under Binary Operations [J].
Canoy, Sergio R., Jr. ;
Mollejon, Reynaldo, V ;
Canoy, John Gabriel E. .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 12 (04) :1455-1463
[4]  
Dettlaff M, 2017, ARXIV170500928V1
[5]  
Dettlaff M., 2017, ARXIV170306034V1
[6]  
Hassan J., 2022, EUR J PURE APPL MATH
[7]   On 2-Step and Hop Dominating Sets in Graphs [J].
Henning, Michael A. ;
Rad, Nader Jafari .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :913-927
[8]   Super Dominating Sets in Graphs [J].
Lemanska, M. ;
Swaminathan, V. ;
Venkatakrishnan, Y. B. ;
Zuazua, R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) :353-357
[9]   Double hop dominating sets in graphs [J].
Mollejon, Reynaldo, V ;
Canoy, Sergio R., Jr. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
[10]  
Natarajan C., 2017, VERSITA, V102, P2393