Application of a Nonparametric Pattern Recognition Algorithm to the Problem of Testing the Hypothesis of the Independence of Variables of Multi-Valued Functions

被引:4
作者
Lapko, A., V [1 ,2 ]
Lapko, V. A. [1 ,2 ]
Bakhtina, A., V [2 ]
机构
[1] Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk, Russia
[2] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia
关键词
hypothesis testing; independent random variables; dependent random variables; multi-valued functional dependencies; two-dimensional random variables; pattern recognition algorithm; maximum likelihood test; kernel estimation of probability density; KERNEL DENSITY-ESTIMATION; BANDWIDTH SELECTION; CROSS-VALIDATION; CHOICE;
D O I
10.1007/s11018-022-02043-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The problem of hypothesis testing for the independence of two-dimensional random variables in the analysis of variables of multi-valued functions is considered. To solve it, we used a technique based on a nonparametric kernel-type pattern recognition algorithm corresponding to the maximum likelihood criterion. The technique made it possible to bypass the problem of decomposing the random variable domain of values into intervals. Based on the results of computational experiments, the effectiveness of the applied technique was estimated depending on the type of multi-valued functions, the level of random noise and the amount of initial statistical data. The results obtained are relevant for solving the problem of detecting natural and technical objects from remote sensing data.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 24 条
[11]   A hybrid bandwidth selection methodology for kernel density estimation [J].
Jiang, Min ;
Provost, Serge B. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (03) :614-627
[12]  
[Лапко Александр Васильевич Lapko A.V.], 2021, [Автометрия, Avtometriya, Avtometriya], V57, P41, DOI 10.15372/AUT20210205
[13]  
[Лапко Александр Васильевич Lapko Aleksandr V.], 2021, [Измерительная техника, Izmeritel'naya Tekhnika], P9, DOI 10.32446/0368-1025it.2021-3-9-14
[14]  
Lapko AV., 2017, IZMER TEKH, V6, P3
[15]   A fast and objective multidimensional kernel density estimation method: fastKDE [J].
O'Brien, Travis A. ;
Kashinath, Karthik ;
Cavanaugh, Nicholas R. ;
Collins, William D. ;
O'Brien, John P. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 101 :148-160
[16]   ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE [J].
PARZEN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03) :1065-&
[17]  
Racine, 2007, Nonparametric Econometrics: Theory and Practice
[18]  
RUDEMO M, 1982, SCAND J STAT, V9, P65
[19]  
Scott DW, 2015, WILEY SER PROBAB ST, P1, DOI 10.1002/9781118575574
[20]  
Sharakshane AS., 1977, COMPLEX SYST