Real-time estimation scheme for the spot cross volatility of jump diffusion processes

被引:2
作者
Ogawa, Shigeyoshi [1 ]
Ngo, Hoang-Long [1 ]
机构
[1] Ritsumeikan Univ, Dept Math Sci, Shiga 5258577, Japan
关键词
Spot cross volatility; Diffusion process; Jump process; Threshold estimator; Quadratic variation scheme;
D O I
10.1016/j.matcom.2010.01.009
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a finite set of observed data {X(tk) (omega(0)), Y(tk) (omega(0))} of just one sample path at n regularly spaced time of the processes X(t) and Y(t) satisfying dX(t) = a(o)(t)dt + a(1)(t)dW(1)(t) + a(2)(t)dW(2)(t) + dJ(1)(t), dY(t) = b(0)(t)dt + b(1)(t)dW(2)(t) + b(2)(t)dW(2)(t) + dJ(2)(t), t is an element of [0, T], where J(1), J(2) are jump process, we are to investigate a numerical scheme for the estimation of the value nu(X,Y)(t) = a(1)(t)b(1)(t) + a(2)(t)b(2)(t) called cross volatility. Our framework also contains the volatility estimation problem as a special case. We will show that our scheme works under mild assumptions on the activity of the jump process J(t). (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1962 / 1976
页数:15
相关论文
共 15 条
[1]   Volatility estimators for discretely sampled Levy processes [J].
Ait-Sahalia, Yacine ;
Jacod, Jean .
ANNALS OF STATISTICS, 2007, 35 (01) :355-392
[2]  
Alvarez A., 2008, ESTIMATION INSTANTAN
[3]  
BARNDORFFNIELSE.OE, 2006, CRS FINANCIAL MATH S
[4]  
Hall P., 1980, Martingale Limit Theory and Its Application
[5]   Non-parametric kernel estimation of the coefficient of a diffusion [J].
Jacod, J .
SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (01) :83-96
[6]  
Kloeden P.E., 2012, Numerical solution of SDE through computer experiments
[7]  
Malliavin P., 2005, REV FINANC STUD, V5, P387
[8]  
Malliavin P., 2006, Stochastic Calculus of Variations in Mathematical Finance
[9]  
Mancini C, 2004, Scandanavian Actuarial Journal, V2004, P42
[10]  
OGAWA S, 2009, IMPROVED TWOSTEP REG