A Systematic Literature Review of Machine Learning Approaches for Optimization in Additive Manufacturing

被引:6
作者
Breitenbach, Johannes [1 ]
Seidenspinner, Friedrich [2 ]
Vural, Furkan [2 ]
机构
[1] Univ Bayreuth, Bayreuth, Germany
[2] Aalen Univ, Aalen, Germany
来源
2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022) | 2022年
关键词
Additive manufacturing; manufacturability; machine learning; parameter optimization;
D O I
10.1109/COMPSAC54236.2022.00180
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The rapid expansion of additive manufacturing into more and more industries increases the need to improve productivity by optimizing the technological process chains. This paper reviews literature about machine learning approaches using big data on High-Performance Computing resources for optimizing additive manufacturing processes, starting from the parts' geometrical design. Based on the literature included in international peer-reviewed journals and conferences, we build a comprehensive overview of optimization methods in the three main stages geometrical design, process parameter configuration, and in-situ anomaly detection. Furthermore, we aim to foster the understanding and adaption of the identified machine learning approaches for optimizing additive manufacturing and identify future research needs.
引用
收藏
页码:1147 / 1152
页数:6
相关论文
共 43 条
[1]   Prediction of microstructural defects in additive manufacturing from powder bed quality using digital image correlation [J].
Bartlett, Jamison L. ;
Jarama, Alex ;
Jones, Jonaaron ;
Li, Xiaodong .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 794
[2]   Prediction of geometry deviations in additive manufactured parts: comparison of linear regression with machine learning algorithms [J].
Baturynska, Ivanna ;
Martinsen, Kristian .
JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (01) :179-200
[3]   Application of Machine Learning Methods to Improve Dimensional Accuracy in Additive Manufacturing [J].
Baturynska, Ivanna ;
Semeniuta, Oleksandr ;
Wang, Kesheng .
ADVANCED MANUFACTURING AND AUTOMATION VIII, 2019, 484 :245-252
[4]   Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework [J].
Baturynska, Ivanna ;
Semeniuta, Oleksandr ;
Martinsen, Kristian .
11TH CIRP CONFERENCE ON INTELLIGENT COMPUTATION IN MANUFACTURING ENGINEERING, 2018, 67 :227-232
[5]   Machine learning-based image processing for on-line defect recognition in additive manufacturing [J].
Caggiano, Alessandra ;
Zhang, Jianjing ;
Alfieri, Vittorio ;
Caiazzo, Fabrizia ;
Gao, Robert ;
Teti, Roberto .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2019, 68 (01) :451-454
[6]  
Deng J., 2019, Bead Geometry Prediction for Multi-layer and Multi-bead Wire and Arc Additive Manufacturing Based on XGBoost, P125, DOI [10.1007/978-981-13-8668-87, DOI 10.1007/978-981-13-8668-87]
[7]  
Douard A, 2018, IN C IND ENG ENG MAN, P1746, DOI 10.1109/IEEM.2018.8607275
[8]   Modeling and Optimization Approaches of Laser-Based Powder-Bed Fusion Process for Ti-6Al-4V Alloy [J].
Fotovvati, Behzad ;
Balasubramanian, Madhusudhanan ;
Asadi, Ebrahim .
COATINGS, 2020, 10 (11) :1-29
[9]   Modeling of additive manufacturing processes for metals: Challenges and opportunities [J].
Francois, M. M. ;
Sun, A. ;
King, W. E. ;
Henson, Nj. ;
Tourret, D. ;
Bronkhorst, C. A. ;
Carlson, N. N. ;
Newman, C. K. ;
Haut, T. ;
Bakosi, J. ;
Gibbs, J. W. ;
Livescu, V. ;
Vander Wiel, S. A. ;
Clarke, Aj. ;
Schraad, M. W. ;
Blacker, T. ;
Lim, H. ;
Rodgers, T. ;
Owen, S. ;
Abdeljawad, F. ;
Madison, J. ;
Anderson, A. T. ;
Fattebert, J-L. ;
Ferencz, R. M. ;
Hodge, N. E. ;
Khairallah, S. A. ;
Walton, O. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (04) :198-206
[10]   Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging [J].
Gobert, Christian ;
Reutzel, Edward W. ;
Petrich, Jan ;
Nassar, Abdalla R. ;
Phoha, Shashi .
ADDITIVE MANUFACTURING, 2018, 21 :517-528