Synthesis and characterization of 2D transition metal dichalcogenides: Recent progress from a vacuum surface science perspective

被引:80
作者
Lasek, Kinga [1 ]
Li, Jingfeng [1 ]
Kolekar, Sadhu [1 ]
Coelho, Paula Mariel [1 ]
Guo, Lu'an [1 ,2 ,3 ]
Zhang, Min [2 ]
Wang, Zhiming [3 ]
Batzill, Matthias [1 ]
机构
[1] Univ S Florida, Dept Phys, Tampa, FL 33620 USA
[2] Dongguan Univ Technol, Guangdong Engn & Technol Res Ctr Adv Nanomat, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
关键词
Transition metal dichalcogenides; van der Waals epitaxy; Scanning tunneling microscopy; Angle resolved photoemission spectroscopy; Charge density waves; Topologically protected states; Monolayer; Heterostructures; Moire structures; Self-intercalation; Defects; Mirror grain boundaries; Dopants; Molecular adsorption; DER-WAALS EPITAXY; CHARGE-DENSITY-WAVE; CHEMICAL-VAPOR-DEPOSITION; MOLECULAR-BEAM EPITAXY; SCANNING-TUNNELING-MICROSCOPY; TOPOLOGICAL FERMI ARCS; MIRROR TWIN BOUNDARIES; MOTT-INSULATING STATE; II DIRAC FERMIONS; SINGLE-LAYER MOS2;
D O I
10.1016/j.surfrep.2021.100523
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered transition metal dichalcogenides (TMDs) are a diverse group of materials whose properties vary from semiconducting to metallic with a variety of many body phenomena, ranging from charge density wave (CDW), superconductivity, to Mott-insulators. Recent interest in topologically protected states revealed also that some TMDs host bulk Diracor Wyle-semimetallic states and their corresponding surface states. In this review, we focus on the synthesis of TMDs by vacuum processes, such as molecular beam epitaxy (MBE). After an introduction of these preparation methods and categorize the basic electronic properties of TMDs, we address the characterization of vacuum synthesized materials in their ultrathin limit-mainly as a single monolayer material. Scanning tunneling microscopy and angle resolved photoemission spectroscopy has revealed detailed information on how monolayers differ in their properties from multi-layer and bulk materials. The status of monolayer properties is given for the TMDs, where data are available. Distinct modifications of monolayer properties compared to their bulk counterparts are highlighted. This includes the well-known transition from indirect to direct band gap in semiconducting group VI-B TMDs as the material-thickness is reduced to a single molecular layer. In addition, we discuss the new or modified CDW states in monolayer VSe2 and TiTe2, a Mott-insulating state in monolayer 1T-TaSe2, and the monolayer specific 2D topological insulator 1T'-WTe2, which gives rise to a quantum spin Hall insulator. New structural phases, that do not exist in the bulk, may be synthesized in the monolayer by MBE. These phases have special properties, including the Mott insulator 1T-NbSe2, the 2D topological insulators of 1T'-MoTe2, and the CDW material 1T-VTe2. After discussing the pure TMDs, we report the properties of nanostructured or modified TMDs. Edges and mirror twin grain boundaries (MTBs) in 2D materials are 1D structures. In group VI-B semiconductors, these 1D structures may be metallic and their properties obey Tomonaga Luttinger quantum liquid behavior. Formation of Mo-rich MTBs in Mo-dichalcogenides and self-intercalation in between TMD-layers are discussed as potential compositional variants that may occur during MBE synthesis of TMDs or may be induced intentionally during post-growth modifications. In addition to compositional modifications, phase switching and control, in particular between the 1H and 1T (or 1T') phases, is a recurring theme in TMDs. Methods of phase control by tuning growth conditions or by post-growth modifications, e.g. by electron doping, are discussed. The properties of heterostructures of TMD monolayers are also introduced, with a focus on lateral electronic modifications in the moire-structures of group VI-B TMDs. The lateral potential induced in the moire structures forms the basis of the currently debated moire-excitons. Finally, we review a few cases of molecular adsorption on nanostructured monolayer TMDs. This review is intended to present a comprehensive overview of vacuum studies of fundamental materials' properties of TMDs and should complement the investigations on TMDs prepared by exfoliation or chemical vapor deposition and their applications. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:52
相关论文
共 501 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   One dimensional metallic edges in atomically thin WSe2 induced by air exposure [J].
Addou, Rafik ;
Smyth, Christopher M. ;
Noh, Ji-Young ;
Lin, Yu-Chuan ;
Pan, Yi ;
Eichfeld, Sarah M. ;
Foelsch, Stefan ;
Robinson, Joshua A. ;
Cho, Kyeongjae ;
Feenstra, Randall M. ;
Wallace, Robert M. .
2D MATERIALS, 2018, 5 (02)
[3]   Effect of electron doping on lattice instabilities in single-layer 1H-TaS2 [J].
Albertini, Oliver R. ;
Liu, Amy Y. ;
Calandra, Matteo .
PHYSICAL REVIEW B, 2017, 95 (23)
[4]   Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures [J].
Alexeev, Evgeny M. ;
Ruiz-Tijerina, David A. ;
Danovich, Mark ;
Hamer, Matthew J. ;
Terry, Daniel J. ;
Nayak, Pramoda K. ;
Ahn, Seongjoon ;
Pak, Sangyeon ;
Lee, Juwon ;
Sohn, Jung Inn ;
Molas, Maciej R. ;
Koperski, Maciej ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Novoselov, Kostya S. ;
Gorbachev, Roman V. ;
Shin, Hyeon Suk ;
Fal'ko, Vladimir I. ;
Tartakovskii, Alexander I. .
NATURE, 2019, 567 (7746) :81-+
[5]   Molecular beam epitaxy of thin HfTe2 semimetal films [J].
Aminalragia-Giamini, S. ;
Marquez-Velasco, J. ;
Tsipas, P. ;
Tsoutsou, D. ;
Renaud, G. ;
Dimoulas, A. .
2D MATERIALS, 2017, 4 (01)
[6]   Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides [J].
Ang, R. ;
Wang, Z. C. ;
Chen, C. L. ;
Tang, J. ;
Liu, N. ;
Liu, Y. ;
Lu, W. J. ;
Sun, Y. P. ;
Mori, T. ;
Ikuhara, Y. .
NATURE COMMUNICATIONS, 2015, 6
[7]   Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2-xSex [J].
Ang, R. ;
Miyata, Y. ;
Ieki, E. ;
Nakayama, K. ;
Sato, T. ;
Liu, Y. ;
Lu, W. J. ;
Sun, Y. P. ;
Takahashi, T. .
PHYSICAL REVIEW B, 2013, 88 (11)
[8]   Real-Space Coexistence of the Melted Mott State and Superconductivity in Fe-Substituted 1T-TaS2 [J].
Ang, R. ;
Tanaka, Y. ;
Ieki, E. ;
Nakayama, K. ;
Sato, T. ;
Li, L. J. ;
Lu, W. J. ;
Sun, Y. P. ;
Takahashi, T. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[9]   Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C [J].
Ansari, Lida ;
Monaghan, Scott ;
McEvoy, Niall ;
Coileain, Cormac O. ;
Cullen, Conor P. ;
Lin, Jun ;
Siris, Rita ;
Stimpel-Lindner, Tanja ;
Burke, Kevin F. ;
Mirabelli, Gioele ;
Duffy, Ray ;
Caruso, Enrico ;
Nagle, Roger E. ;
Duesberg, Georg S. ;
Hurley, Paul K. ;
Gity, Farzan .
NPJ 2D MATERIALS AND APPLICATIONS, 2019, 3 (1)
[10]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)