Boundary Regularity for p-Harmonic Functions and Solutions of Obstacle Problems on Unbounded Sets in Metric Spaces

被引:2
作者
Bjorn, Anders [1 ]
Hansevi, Daniel [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
barrier; boundary regularity; Kellogg property; metric space; obstacle problem; p-harmonic function; DIRICHLET PROBLEM; MAZURKIEWICZ BOUNDARY; SOBOLEV FUNCTIONS; KELLOGG PROPERTY; POTENTIAL-THEORY; PERRON METHOD; RESPECT; QUASIMINIMIZERS; CONTINUITY;
D O I
10.1515/agms-2019-0009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincare inequality, 1 < p < infinity. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.
引用
收藏
页码:179 / 196
页数:18
相关论文
共 51 条
[1]   The prime end capacity of inaccessible prime ends, resolutivity, and the Kellogg property [J].
Adamowicz, Tomasz ;
Shanmugalingam, Nageswari .
MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) :1633-1656
[2]   Regularity of p(.)-superharmonic functions, the Kellogg property and semiregular boundary points [J].
Adamowicz, Tomasz ;
Bjorn, Anders ;
Bjorn, Jana .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (06) :1131-1153
[3]  
[Anonymous], 1924, Journal of Mathematical Physics
[4]  
[Anonymous], 1970, Vestnik Leningrad. Univ
[5]  
Björn A, 2008, HOUSTON J MATH, V34, P1197
[6]   Characterizations of p-superharmonic functions on metric spaces [J].
Björn, A .
STUDIA MATHEMATICA, 2005, 169 (01) :45-62
[7]   The Perron method for p-harmonic functions in metric spaces [J].
Björn, A ;
Björn, J ;
Shanmugalingam, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :398-429
[8]  
Björn A, 2003, J REINE ANGEW MATH, V556, P173
[9]  
Björn A, 2007, COMMENT MATH UNIV CA, V48, P343
[10]   A regularity classification of boundary points for p-harmonic functions and quasiminimizers [J].
Bjorn, Anders .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :39-47