Integrated Analysis of Whole Genome and Epigenome Data Using Machine Learning Technology: Toward the Establishment of Precision Oncology

被引:30
作者
Asada, Ken [1 ,2 ]
Kaneko, Syuzo [1 ,2 ]
Takasawa, Ken [1 ,2 ]
Machino, Hidenori [1 ,2 ]
Takahashi, Satoshi [1 ,2 ]
Shinkai, Norio [1 ,2 ,3 ]
Shimoyama, Ryo [1 ,2 ]
Komatsu, Masaaki [1 ,2 ]
Hamamoto, Ryuji [1 ,2 ,3 ]
机构
[1] RIKEN, Canc Translat Res Team, Ctr Adv Intelligence Project, Tokyo, Japan
[2] Natl Canc Ctr, Div Med Res & Dev, Res Inst, Tokyo, Japan
[3] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Dept NCC Canc Sci, Tokyo, Japan
关键词
artificial intelligence; whole genome analysis; epigenome analysis; machine learning; biomarker discovery; cancer diagnosis and treatment; precision oncology; DNA METHYLATION; NEURAL-NETWORKS; RNA-SEQ; CANCER; PREDICTION; ENHANCER; GENERATION; MEDICINE; UTILITY;
D O I
10.3389/fonc.2021.666937
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
With the completion of the International Human Genome Project, we have entered what is known as the post-genome era, and efforts to apply genomic information to medicine have become more active. In particular, with the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in his State of the Union address at the beginning of 2015, "precision medicine," which aims to divide patients and potential patients into subgroups with respect to disease susceptibility, has become the focus of worldwide attention. The field of oncology is also actively adopting the precision oncology approach, which is based on molecular profiling, such as genomic information, to select the appropriate treatment. However, the current precision oncology is dominated by a method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS) to analyze a limited number of specific cancer-related genes and suggest optimal treatments, but this method causes the problem that the number of patients who benefit from it is limited. In order to steadily develop precision oncology, it is necessary to integrate and analyze more detailed omics data, such as whole genome data and epigenome data. On the other hand, with the advancement of analysis technologies such as NGS, the amount of data obtained by omics analysis has become enormous, and artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are being actively used to make more efficient and accurate predictions. In this review, we will focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce the latest results of omics analysis using ML technologies for the development of precision oncology, and discuss the future prospects.
引用
收藏
页数:12
相关论文
共 143 条
[81]   Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies [J].
Mieth, Bettina ;
Kloft, Marius ;
Rodriguez, Juan Antonio ;
Sonnenburg, Soren ;
Vobruba, Robin ;
Morcillo-Suarez, Carlos ;
Farre, Xavier ;
Marigorta, Urko M. ;
Fehr, Ernst ;
Dickhaus, Thorsten ;
Blanchard, Gilles ;
Schunk, Daniel ;
Navarro, Arcadi ;
Mueller, Klaus-Robert .
SCIENTIFIC REPORTS, 2016, 6
[82]   HiChIP: efficient and sensitive analysis of protein-directed genome architecture [J].
Mumbach, Maxwell R. ;
Rubin, Adam J. ;
Flynn, Ryan A. ;
Dai, Chao ;
Khavari, Paul A. ;
Greenleaf, William J. ;
Chang, Howard Y. .
NATURE METHODS, 2016, 13 (11) :919-+
[83]   Sequence-specific error profile of Illumina sequencers [J].
Nakamura, Kensuke ;
Oshima, Taku ;
Morimoto, Takuya ;
Ikeda, Shun ;
Yoshikawa, Hirofumi ;
Shiwa, Yuh ;
Ishikawa, Shu ;
Linak, Margaret C. ;
Hirai, Aki ;
Takahashi, Hiroki ;
Altaf-Ul-Amin, Md. ;
Ogasawara, Naotake ;
Kanaya, Shigehiko .
NUCLEIC ACIDS RESEARCH, 2011, 39 (13) :e90
[84]   Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes [J].
Nassiri, Farshad ;
Chakravarthy, Ankur ;
Feng, Shengrui ;
Shen, Shu Yi ;
Nejad, Romina ;
Zuccato, Jeffrey A. ;
Voisin, Mathew R. ;
Patil, Vikas ;
Horbinski, Craig ;
Aldape, Kenneth ;
Zadeh, Gelareh ;
De Carvalho, Daniel D. .
NATURE MEDICINE, 2020, 26 (07) :1044-+
[85]   Mutational Processes Molding the Genomes of 21 Breast Cancers [J].
Nik-Zainal, Serena ;
Alexandrov, Ludmil B. ;
Wedge, David C. ;
Van Loo, Peter ;
Greenman, Christopher D. ;
Raine, Keiran ;
Jones, David ;
Hinton, Jonathan ;
Marshall, John ;
Stebbings, Lucy A. ;
Menzies, Andrew ;
Martin, Sancha ;
Leung, Kenric ;
Chen, Lina ;
Leroy, Catherine ;
Ramakrishna, Manasa ;
Rance, Richard ;
Lau, King Wai ;
Mudie, Laura J. ;
Varela, Ignacio ;
McBride, David J. ;
Bignell, Graham R. ;
Cooke, Susanna L. ;
Shlien, Adam ;
Gamble, John ;
Whitmore, Ian ;
Maddison, Mark ;
Tarpey, Patrick S. ;
Davies, Helen R. ;
Papaemmanuil, Elli ;
Stephens, Philip J. ;
McLaren, Stuart ;
Butler, Adam P. ;
Teague, Jon W. ;
Jonsson, Goran ;
Garber, Judy E. ;
Silver, Daniel ;
Miron, Penelope ;
Fatima, Aquila ;
Boyault, Sandrine ;
Langerod, Anita ;
Tutt, Andrew ;
Martens, John W. M. ;
Aparicio, Samuel A. J. R. ;
Borg, Ake ;
Salomon, Anne Vincent ;
Thomas, Gilles ;
Borresen-Dale, Anne-Lise ;
Richardson, Andrea L. ;
Neuberger, Michael S. .
CELL, 2012, 149 (05) :979-993
[86]  
Novak A. M., 2017, BIORXIV, DOI [10.1101/101378, DOI 10.1101/101378]
[87]   Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes [J].
Nuzzo, Pier Vitale ;
Berchuck, Jacob E. ;
Korthauer, Keegan ;
Spisak, Sandor ;
Nassar, Amin H. ;
Abou Alaiwi, Sarah ;
Chakravarthy, Ankur ;
Shen, Shu Yi ;
Bakouny, Ziad ;
Boccardo, Francesco ;
Steinharter, John ;
Bouchard, Gabrielle ;
Curran, Catherine R. ;
Pan, Wenting ;
Baca, Sylvan C. ;
Seo, Ji-Heui ;
Lee, Gwo-Shu Mary ;
Michaelson, M. Dror ;
Chang, Steven L. ;
Waikar, Sushrut S. ;
Sonpavde, Guru ;
Irizarry, Rafael A. ;
Pomerantz, Mark ;
De Carvalho, Daniel D. ;
Choueiri, Toni K. ;
Freedman, Matthew L. .
NATURE MEDICINE, 2020, 26 (07) :1041-+
[88]   Aspirin as a potential modality for the chemoprevention of breast cancer: A dose-response meta-analysis of cohort studies from 857,831 participants [J].
Lu, Liming ;
Shi, Leiyu ;
Zeng, Jingchun ;
Wen, Zehuai .
ONCOTARGET, 2017, 8 (25) :40389-40401
[89]   Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction [J].
Ozaki, K ;
Ohnishi, Y ;
Iida, A ;
Sekine, A ;
Yamada, R ;
Tsunoda, T ;
Sato, H ;
Sato, H ;
Hori, M ;
Nakamura, Y ;
Tanaka, T .
NATURE GENETICS, 2002, 32 (04) :650-654
[90]   Genome graphs and the evolution of genome inference [J].
Paten, Benedict ;
Novak, Adam M. ;
Eizenga, Jordan M. ;
Garrison, Erik .
GENOME RESEARCH, 2017, 27 (05) :665-676