The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces

被引:9
作者
Peng, Li [1 ]
Zhou, Yong [1 ,2 ]
Ahmad, Bashir [2 ]
Alsaedi, Ahmed [2 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; Caputo fractional derivative; Cauchy problem; Sobolev space; Existence; MILD SOLUTIONS; TIME; CONTROLLABILITY; EXISTENCE;
D O I
10.1016/j.chaos.2017.02.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we use the tools from harmonic analysis to study the Cauchy problem for Navier-Stokes equations with time-fractional derivative of order a. (0, 1), which can be used to simulate the anomalous diffusion in fractal media. Two main results concerning the local existence of solutions for the given problem in Sobolev space are addressed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:218 / 228
页数:11
相关论文
共 35 条
[1]   Analyticity of the Stokes semigroup in spaces of bounded functions [J].
Abe, Ken ;
Giga, Yoshikazu .
ACTA MATHEMATICA, 2013, 211 (01) :1-46
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[5]  
[Anonymous], FRACTIONAL EVOLUTION
[6]  
Coron J- M, 1996, RUSSIAN J MATH PHYS, V4
[7]   Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components [J].
Coron, Jean-Michel ;
Lissy, Pierre .
INVENTIONES MATHEMATICAE, 2014, 198 (03) :833-880
[8]   Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component [J].
Coron, Jean-Michel ;
Guerrero, Sergio .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (05) :528-545
[9]   Well-Posedness for the Navier-Stokes Equations with Datum in the Sobolev Spaces [J].
Khai D.Q. .
Acta Mathematica Vietnamica, 2017, 42 (3) :431-443
[10]   Mild solutions to the time fractional Navier-Stokes equations in RN [J].
de Carvalho-Neto, Paulo Mendes ;
Planas, Gabriela .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2948-2980