Predicting hydrogen storage in MOFs via machine learning

被引:108
作者
Ahmed, Alauddin [1 ]
Siegel, Donald J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Mat Sci & Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Energy Inst, Ann Arbor, MI 48109 USA
来源
PATTERNS | 2021年 / 2卷 / 07期
关键词
METAL-ORGANIC FRAMEWORKS; HIGH DELIVERABLE CAPACITY; IN-SILICO DESIGN; COORDINATION POLYMERS; MOLECULAR SIMULATION; COMPUTATION-READY; METHANE STORAGE; MONTE-CARLO; ADSORPTION; SITES;
D O I
10.1016/j.patter.2021.100291
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The H-2 capacities of a diverse set of 918,734 metal-organic frameworks (MOFs) sourced from 19 databases is predicted via machine learning (ML). Using only 7 structural features as input, ML identifies 8,282 MOFs with the potential to exceed the capacities of state-of-the-art materials. The identified MOFs are predominantly hypothetical compounds having low densities (<0.31 g cm(-3)) in combination with high surface areas (>5,300 m(2) g(-1)), void fractions (similar to 0.90), and pore volumes (>3.3 cm(3) g(-1)). The relative importance of the input features are characterized, and dependencies on the ML algorithm and training set size are quantified. The most important features for predicting H-2 uptake are pore volume (for gravimetric capacity) and void fraction (for volumetric capacity). The ML models are available on the web, allowing for rapid and accurate predictions of the hydrogen capacities of MOFs from limited structural data; the simplest models require only a single crystallographic feature.
引用
收藏
页数:17
相关论文
共 138 条
[1]   AuToGraFS: Automatic Topological Generator for Framework Structures [J].
Addicoat, Matthew A. ;
Coupry, Damien E. ;
Heine, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (40) :9607-9614
[2]   Quantitative Structure-Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification [J].
Aghaji, Mohammad Zein ;
Fernandez, Michael ;
Boyd, Peter G. ;
Daff, Thomas D. ;
Woo, Tom K. .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (27) :4505-4511
[3]  
Ahmed A, 2019, HyMARC datahub
[4]  
Ahmed A., 2021, FIGSHARE, DOI [10.6084/m9.figshare.14173520.v1, DOI 10.6084/M9.FIGSHARE.14173520.V1]
[5]   Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks [J].
Ahmed, Alauddin ;
Seth, Saona ;
Purewal, Justin ;
Wong-Foy, Antek G. ;
Veenstra, Mike ;
Matzger, Adam J. ;
Siegel, Donald J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Balancing gravimetric and volumetric hydrogen density in MOFs [J].
Ahmed, Alauddin ;
Liu, Yiyang ;
Purewal, Justin ;
Tran, Ly D. ;
Wong-Foy, Antek G. ;
Veenstra, Mike ;
Matzger, Adam J. ;
Siegel, Donald J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (11) :2459-2471
[7]   An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage [J].
Allendorf, Mark D. ;
Hulvey, Zeric ;
Gennett, Thomas ;
Ahmed, Alauddin ;
Autrey, Tom ;
Camp, Jeffrey ;
Cho, Eun Seon ;
Furukawa, Hiroyasu ;
Haranczyk, Maciej ;
Head-Gordon, Martin ;
Jeong, Sohee ;
Karkamkar, Abhi ;
Liu, Di-Jia ;
Long, Jeffrey R. ;
Meihaus, Katie R. ;
Nayyar, Iffat H. ;
Nazarov, Roman ;
Siegel, Donald J. ;
Stavila, Vitalie ;
Urban, Jeffrey J. ;
Veccham, Srimukh Prasad ;
Wood, Brandon C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2784-2812
[8]   An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH4 and H2 adsorption [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Azar, Ayda Nemati Vesali ;
Erucar, Ilknur ;
Velioglu, Sadiye ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) :9593-9608
[9]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[10]   Attainable Volumetric Targets for Adsorption-Based Hydrogen Storage in Porous Crystals: Molecular Simulation and Machine Learning [J].
Anderson, Grace ;
Schweitzer, Benjamin ;
Anderson, Ryther ;
Gomez-Gualdron, Diego A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (01) :120-130