Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes

被引:26
作者
Dunnigan, Lewis [1 ]
Morton, Benjamin J. [1 ]
Ashman, Peter J. [1 ]
Zhang, Xiangping [2 ]
Kwong, Chi Wai [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Chinese Acad Sci, Inst Proc Engn, Beijing, Peoples R China
关键词
Pyrolysis; Biochar; Bioenergy; PM; Gaseous; Emissions; POLYCYCLIC AROMATIC-HYDROCARBONS; RICE HUSK; BIOMASS COMBUSTION; GASEOUS EMISSIONS; PULVERIZED COAL; AIR-POLLUTION; NOX EMISSIONS; PARTICLE-SIZE; BIO-OIL; TEMPERATURE;
D O I
10.1016/j.wasman.2018.05.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The co-production of biochar and bioenergy using pyrolysis-combustion processes can potentially minimize the emission problems associated with conventional methods of agricultural by-product disposal. This approach also provides significant added-value potential through biochar application to soil. Despite these advantages, variations in biomass composition, including sulfur, nitrogen, ash, and volatile matter (VM) content, may significantly influence both the biochar quality and the emissions of harmful particulate matter (PM) and gaseous pollutants (SO2, H2S, NO2, NO). Using a laboratory-scale continuous pyrolysis-combustion facility, the influence of biomass composition (rice husk and grape pruning) and volatile production (pyrolysis) temperature (400-800 degrees C) on the biochar properties and emissions during combustion of the raw pyrolysis volatiles were evaluated. Utilization of grape pruning resulted in higher energy-based yields of PNI1c, than the rice husk, the majority of which consisted of the PM10 fraction due to the elevated pyrogas content of the volatiles. The PM emissions were found to be independent of the feedstock ash content due to its retainment in the biochar. Greater volatilization of biomass sulfur and nitrogen during pyrolysis at higher temperatures resulted in higher yields of sulfurous and nitrogenous gaseous pollutants. The energy-based yields of NO and NO2 were found to increase by 16% and 50% for rice husk and 21% and 189% for grape pruning respectively between 400 and 800 degrees C. The same trend was also observed for the emissions of H2S and SO2 for both feedstocks. (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 46 条
[1]  
Alper K., 2010, CLEAN TECHNOL ENV, V17, P211
[2]  
[Anonymous], 1990, 50 CARB
[3]   Household electrification and indoor air pollution [J].
Barron, Manuel ;
Torero, Maximo .
JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 2017, 86 :81-92
[4]   Emission factors of wood and charcoal-fired cookstoves [J].
Bhattacharya, SC ;
Albina, DO ;
Salam, PA .
BIOMASS & BIOENERGY, 2002, 23 (06) :453-469
[5]  
Boie W., 1953, Energietechnik, V3, P309
[6]   Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars [J].
Claoston, N. ;
Samsuri, A. W. ;
Husni, M. H. Ahmad ;
Amran, M. S. Mohd .
WASTE MANAGEMENT & RESEARCH, 2014, 32 (04) :331-339
[7]   SOME ASPECTS OF MODELING NOx FORMATION ARISING FROM THE COMBUSTION OF 100% WOOD IN A PULVERIZED FUEL FURNACE [J].
Darvell, L. I. ;
Ma, L. ;
Jones, J. M. ;
Pourkashanian, M. ;
Williams, A. .
COMBUSTION SCIENCE AND TECHNOLOGY, 2014, 186 (4-5) :672-683
[8]   Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles [J].
Dunnigan, Lewis ;
Ashman, Peter J. ;
Zhang, Xiangping ;
Kwong, Chi Wai .
JOURNAL OF CLEANER PRODUCTION, 2018, 172 :1639-1645
[9]   Polycyclic aromatic hydrocarbons on particulate matter emitted during the co-generation of bioenergy and biochar from rice husk [J].
Dunnigan, Lewis ;
Morton, Benjamin J. ;
van Eyk, Philip J. ;
Ashman, Peter J. ;
Zhang, Xiangping ;
Hall, Philip Anthony ;
Kwong, Chi Wai .
BIORESOURCE TECHNOLOGY, 2017, 244 :1015-1023
[10]   Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels [J].
Fournel, S. ;
Marcos, B. ;
Godbout, S. ;
Heitz, M. .
BIORESOURCE TECHNOLOGY, 2015, 179 :165-172