On two geometric theta lifts

被引:284
作者
Bruinier, JH
Funke, J
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
[2] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88001 USA
关键词
D O I
10.1215/S0012-7094-04-12513-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theta correspondence has been an important tool in studying cycles in locally symmetric spaces of orthogonal type. In this paper we establish, for the orthogonal group O(p, 2) an adjointness result between Borcherds's singular theta lift and the Kudla-Millson lift. We extend this result to arbitrary signature by introducing a new singular theta lift for O(p, g). On the geometric side, this lift can be interpreted as a differential character, in the sense of Cheeger and Simons, for the cycles under consideration.
引用
收藏
页码:45 / 90
页数:46
相关论文
共 35 条
[1]  
Abramowitz M., 1984, POCKETBOOK MATH FUNC
[2]  
[Anonymous], 1982, GRAD TEXTS MATH
[3]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[4]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[5]  
BRINIER JH, 2002, LECT NOTES MATH, V1780
[6]  
BRINIER JH, ARXIVMATHNT0310201
[7]   Borcherds products and Chern classes of Hirzebruch-Zagier divisors [J].
Bruinier, JH .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :51-83
[8]   Integrals of automorphic Green's functions associated to Heegner divisors [J].
Bruinier, JH ;
Kühn, U .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (31) :1687-1729
[9]  
BURGOS JI, 2003, COHOMOLOGICAL ARITHM
[10]  
CHEEGER J, 1985, LECT NOTES MATH, V1167, P50