2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
|
2021年
关键词:
Edge AI;
Federated Learning;
Model Poisoning Attacks;
Model Security;
System Robustness;
D O I:
10.1109/GLOBECOM46510.2021.9685082
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
With the upcoming edge AI, federated learning (FL) is a privacy-preserving framework to meet the General Data Protection Regulation (GDPR). Unfortunately, FL is vulnerable to an up-to-date security threat, model poisoning attacks. By successfully replacing the global model with the targeted poisoned model, malicious end devices can trigger backdoor attacks and manipulate the whole learning process. The traditional researches under a homogeneous environment can ideally exclude the outliers with scarce side-effects on model performance. However, in privacy-preserving FL, each end device possibly owns a few data classes and different amounts of data, forming into a substantial heterogeneous environment where outliers could be malicious or benign. To achieve the system performance and robustness of FL's framework, we should not assertively remove any local model from the global model updating procedure. Therefore, in this paper, we propose a defending strategy called FedEqual to mitigate model poisoning attacks while preserving the learning task's performance without excluding any benign models. The results show that FedEqual outperforms other state-of-the-art baselines under different heterogeneous environments based on reproduced up-to-date model poisoning attacks.
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Zhou, Zhi
;
Chen, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Chen, Xu
;
Li, En
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Li, En
;
Zeng, Liekang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Zeng, Liekang
;
Luo, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Luo, Ke
;
Zhang, Junshan
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USASun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Zhou, Zhi
;
Chen, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Chen, Xu
;
Li, En
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Li, En
;
Zeng, Liekang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Zeng, Liekang
;
Luo, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
Luo, Ke
;
Zhang, Junshan
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USASun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China