Boundary-value problems for a nonlinear hyperbolic equation with variable coefficients and the L,vy Laplacian

被引:0
作者
Feller, M. N. [1 ]
机构
[1] Ukrainian State Res Inst Resurs, Kiev, Ukraine
关键词
nonlinear hyperbolic equation; boundary-value problem; Levy Laplacian; Shilov function; Hilbert space; LEVY LAPLACIAN; WAVE-EQUATION;
D O I
10.1134/S0001434614090144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Levy Laplacian Delta(L), beta(root 2 parallel to x parallel to(H) partial derivative U(t,x)/partial derivative t)partial derivative U-2(t,x)/partial derivative t(2) + alpha(U(t,x))[partial derivative U(t,x)/partial derivative t](2) = Delta U-L(t,x), we present algorithms for the solution of the boundary-value problem U(0, x) = u(0), U(t, 0) = u(1) and the exterior boundary-value problem U(0, x) = v(0), U(t,x)vertical bar Gamma = v(1), lim(parallel to x parallel to H ->infinity)U(t,x) = v(2) for the class of Shilov functions depending on the parameter t.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 8 条
[1]  
Albeverio S, 2010, METHODS FUNCT ANAL T, V16, P197
[2]   The Cauchy problem for the wave equation with Levy Laplacian [J].
Albeverio, S. A. ;
Belopol'skaya, Ya. I. ;
Feller, M. N. .
MATHEMATICAL NOTES, 2010, 87 (5-6) :787-796
[3]   Boundary-value problems for a nonlinear hyperbolic equation with divergent part and L,vy Laplacian [J].
Feller, M. N. .
UKRAINIAN MATHEMATICAL JOURNAL, 2012, 64 (02) :273-281
[5]  
Feller M. N., 2005, CAMBRIDGE TRACTS MAT, V166
[6]  
KOVTUN II, 2012, UKR MAT ZH, V64, P1492
[7]  
Levy P., 1951, Problemes Concrets d'Analyse Fonctionnelle
[8]  
SHILOV GE, 1967, FUNCTIONAL ANAL APPL, V1, P158