Low-regularity Schrodinger maps, II:: global well-posedness in dimensions d ≥ 3

被引:47
作者
Ionescu, Alexandru D. [1 ]
Kenig, Carlos E.
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.1007/s00220-006-0180-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In dimensions d >= 3, we prove that the Schrodinger map initial-value problem [GRAPHICS] is globally well-posed for small data s(0) in the critical Besov spaces B-Q(d/2)(R-d;S-2), Q is an element of S-2
引用
收藏
页码:523 / 559
页数:37
相关论文
共 25 条
[1]  
BEJERNARU I, 2006, ARXIVORG0604255
[2]  
Chang NH, 2000, COMMUN PUR APPL MATH, V53, P590
[3]   Local Schrodinger flow into Kahler manifolds [J].
Ding, WY ;
Wang, YD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (11) :1446-1464
[4]  
IONESCU AD, J AM MATH SOC
[5]  
IONESCU AD, 2006, LOW REGULARITY SCHRO
[6]  
Kato J, 2005, MATH RES LETT, V12, P171
[7]  
KATO J, 2005, UNIQUENESS MODIFIED
[8]  
KENIG C, 2005, CAUCHY PROBLEM SCHRO
[9]   The Cauchy problem for the hyperbolic-elliptic Ishimori system and Schrodinger maps [J].
Kenig, CE ;
Nahmod, AR .
NONLINEARITY, 2005, 18 (05) :1987-2009
[10]  
Klainerman S, 1997, COMMUN PART DIFF EQ, V22, P901