T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation

被引:624
作者
Li, Ming O.
Wan, Yisong Y.
Flavell, Richard A.
机构
[1] Yale Univ, Sch Med, Immunobiol Sect, New Haven, CT 06520 USA
[2] Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
D O I
10.1016/j.immuni.2007.03.014
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
TGF-beta 1 is a regulatory cytokine with a pleiotropic role in immune responses. TGF-beta 1 is widely expressed in leukocytes and stromal cells. However, the functions of TGF-beta 1 expressed by specific lineages of cells remain unknown in vivo. Here, we show that mice with a T cell-specific deletion of the Tgfb1 gene developed lethal immunopathology in multiple organs, and this development was associated with enhanced T cell proliferation, activation, and CD4(+) T cell differentiation into T helper 1 (Th1) and Th2 cells. TGF-beta 1 produced by Foxp3-expressing regulatory T cells was required to inhibit Th1-cell differentiation and inflammatory-bowel disease in a transfer model. In addition, T cell-produced TGF-beta 1 promoted Th17-cell differentiation and was indispensable for the induction of experimental autoimmune encephalomyelitis. These findings reveal essential roles for T cell-produced TGF-beta 1 in controlling differentiation of T helper cells and controlling inflammatory diseases.
引用
收藏
页码:579 / 591
页数:13
相关论文
共 49 条
[1]   Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells [J].
Bettelli, E ;
Carrier, YJ ;
Gao, WD ;
Korn, T ;
Strom, TB ;
Oukka, M ;
Weiner, HL ;
Kuchroo, VK .
NATURE, 2006, 441 (7090) :235-238
[2]   Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivoi [J].
Chen, ML ;
Pittet, MJ ;
Gorelik, L ;
Flavell, RA ;
Weissleder, R ;
von Boehmer, H ;
Khazaie, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (02) :419-424
[3]   Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3 [J].
Chen, WJ ;
Jin, WW ;
Hardegen, N ;
Lei, KJ ;
Li, L ;
Marinos, N ;
McGrady, G ;
Wahl, SM .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (12) :1875-1886
[4]   Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain [J].
Cua, DJ ;
Sherlock, J ;
Chen, Y ;
Murphy, CA ;
Joyce, B ;
Seymour, B ;
Lucian, L ;
To, W ;
Kwan, S ;
Churakova, T ;
Zurawski, S ;
Wiekowski, M ;
Lira, SA ;
Gorman, D ;
Kastelein, RA ;
Sedgwick, JD .
NATURE, 2003, 421 (6924) :744-748
[5]  
DANG H, 1995, J IMMUNOL, V155, P3205
[6]   T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells [J].
Fahlén, L ;
Read, S ;
Gorelik, L ;
Hurst, SD ;
Coffman, RL ;
Flavell, RA ;
Powrie, F .
JOURNAL OF EXPERIMENTAL MEDICINE, 2005, 201 (05) :737-746
[7]   Cutting edge:: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7 [J].
Fantini, MC ;
Becker, C ;
Monteleone, G ;
Pallone, F ;
Galle, PR ;
Neurath, MF .
JOURNAL OF IMMUNOLOGY, 2004, 172 (09) :5149-5153
[8]   A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3 [J].
Fontenot, JD ;
Rudensky, AY .
NATURE IMMUNOLOGY, 2005, 6 (04) :331-337
[9]   Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells (Reprinted from vol 4, pg 330-336, 2003) [J].
Fontenot, Jason D. ;
Gavin, Marc A. ;
Rudensky, Alexander Y. .
JOURNAL OF IMMUNOLOGY, 2017, 198 (03) :986-992
[10]   Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease [J].
Gorelik, L ;
Flavell, RA .
IMMUNITY, 2000, 12 (02) :171-181