Dynamical Critical Exponent for Two-Species Totally Asymmetric Diffusion on a Ring

被引:6
作者
Wehefritz-Kaufmann, Birgit [1 ]
机构
[1] Purdue Univ, Dept Math & Phys, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
asymmetric diffusion; nested U(q)(SU(3)) Bethe ansatz; dynamical critical exponent; SIMPLE EXCLUSION PROCESS; SPONTANEOUS SYMMETRY-BREAKING; CURRENT FLUCTUATIONS; STATIONARY MEASURE; QUANTUM CHAINS; STEADY-STATE; MODEL; SYSTEM; SHOCKS; REPRESENTATION;
D O I
10.3842/SIGMA.2010.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a study of the two species totally asymmetric diffusion model using the Bethe ansatz. The Hamiltonian has U(q)(SU(3)) symmetry. We derive the nested Bethe ansatz equations and obtain the dynamical critical exponent from the finite-size scaling properties of the eigenvalue with the smallest real part. The dynamical critical exponent is 3/2 which is the exponent corresponding to KPZ growth in the single species asymmetric diffusion model.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
ALCARAZ C, LECT NOTES UNPUB
[2]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[3]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[4]   The stationary measure of a 2-type totally asymmetric exclusion process [J].
Angel, O .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) :625-635
[5]   Phase transitions in the two-species totally asymmetric exclusion process with open boundaries [J].
Arita, Chikashi .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
[6]   Spectrum of a multi-species asymmetric simple exclusion process on a ring [J].
Arita, Chikashi ;
Kuniba, Atsuo ;
Sakai, Kazumitsu ;
Sawabe, Tsuyoshi .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (34)
[7]   Spontaneous breaking of translational invariance and spatial condensation in stationary states on a ring. I. The neutral system [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF STATISTICAL PHYSICS, 1999, 97 (1-2) :1-65
[8]   On the Two Species Asymmetric Exclusion Process with Semi-Permeable Boundaries [J].
Ayyer, Arvind ;
Lebowitz, Joel L. ;
Speer, Eugene R. .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (5-6) :1009-1037
[9]   EXACT SOLUTION OF THE ZN+1XZN+1 SYMMETRIC GENERALIZATION OF THE XXZ MODEL [J].
BABELON, O ;
DEVEGA, HJ ;
VIALLET, CM .
NUCLEAR PHYSICS B, 1982, 200 (02) :266-280
[10]   Microscopic shape of shocks in a domain growth model [J].
Balázs, M .
JOURNAL OF STATISTICAL PHYSICS, 2001, 105 (3-4) :511-524