Estimation of Poisson intensity using partially observed concomitant variables

被引:20
作者
Rathbun, SL
机构
[1] Department of Statistics, University of Georgia, Athens
关键词
Gaussian random field; inhomogeneous Poisson process; modulated Poisson process; point process; spatial prediction;
D O I
10.2307/2533158
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In ecology, the spatial point pattern formed by the locations of organisms may be influenced by concomitant environmental variables (e.g., elevation, soil moisture, light intensity, etc.). The modulated Poisson process (a Poisson process whose log intensity is a linear function of concomitant spatial variables) is particularly well suited for modeling the effects of such variables. Maximum likelihood estimation of the parameters of a modulated Poisson process is straightforward when the values of the concomitant spatial variables are known at all locations in the region. This paper considers parameter estimation when the concomitant environmental variables are only observed for a sample of sites in the region. These methods are illustrated using data from a beech-magnolia forest in southern Georgia.
引用
收藏
页码:226 / 242
页数:17
相关论文
共 35 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]  
[Anonymous], MATH GEOL, DOI DOI 10.1007/BF00893213
[3]  
Barnard G. A., 1963, J R STAT SOC B, V25, P294
[4]  
Cox D., 1972, Stochastic Point Processes. The statistical analysis of dependencies in point processes, P55
[5]   ON THE STABILITY OF THE GEOSTATISTICAL METHOD [J].
CRESSIE, N ;
ZIMMERMAN, DL .
MATHEMATICAL GEOLOGY, 1992, 24 (01) :45-59
[6]   FITTING VARIOGRAM MODELS BY WEIGHTED LEAST-SQUARES [J].
CRESSIE, N .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1985, 17 (05) :563-586
[7]  
Cressie N., 1993, STAT SPATIAL DATA, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[8]  
Daley D. J., 2002, INTRO THEORY POINT P
[9]  
Davis P.J., 1984, METHODS NUMERICAL IN
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38