Quantum logic with weakly coupled qubits

被引:21
作者
Geller, Michael R. [1 ]
Pritchett, Emily J. [1 ]
Galiautdinov, Andrei [1 ]
Martinis, John M. [2 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 01期
关键词
D O I
10.1103/PhysRevA.81.012320
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There are well-known protocols for performing controlled NOT (CNOT) quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.
引用
收藏
页数:5
相关论文
共 23 条
[1]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[2]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[3]   Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits [J].
Galiautdinov, Andrei .
PHYSICAL REVIEW A, 2007, 75 (05)
[4]   Controlled-NOT logic with nonresonant Josephson phase qubits [J].
Galiautdinov, Andrei .
PHYSICAL REVIEW A, 2009, 79 (04)
[5]   Single-step controlled-NOT logic from any exchange interaction [J].
Galiautdinov, Andrei .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
[6]   Single-step implementation of universal quantum gates [J].
Grigorenko, IA ;
Khveshchenko, DV .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[7]   Robust two-qubit quantum registers [J].
Grigorenko, IA ;
Khveshchenko, DV .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[8]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[9]   Time optimal control in spin systems [J].
Khaneja, N. ;
Brockett, R. ;
Glaser, S.J. .
Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (03) :323081-320811
[10]   Cartan decomposition of SU(2n) and control of spin systems [J].
Khaneja, N ;
Glaser, SJ .
CHEMICAL PHYSICS, 2001, 267 (1-3) :11-23