Elimination of Irreversible Capacity of Amorphous Silicon: Direct Contact of the Silicon and Lithium Metal

被引:13
作者
Kulova, T. L. [1 ]
Skundin, A. M. [1 ]
机构
[1] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Moscow 119991, Russia
关键词
thin-film amorphous silicon; irreversible capacity; contact lithiation; lithium-ion battery; LI INSERTION/EXTRACTION REACTION; SI FILM; ELECTROCHEMICAL CHARACTERISTICS; ION BATTERIES; ANODE; PERFORMANCE;
D O I
10.1134/S1023193510040129
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A method of elimination of the amorphous silicon irreversible capacity is suggested, which is based on the direct contact of the silicon and lithium metal under electrolyte. It is shown that this contact yields a solid-electrolyte film over the electrode surface even prior to its initial cathodic polarization, which results in the elimination of the irreversible capacity of amorphous silicon.
引用
收藏
页码:470 / 475
页数:6
相关论文
共 50 条
  • [31] Nanostructuring Strategies for Silicon-based Anodes in Lithium-ion Batteries: Tuning Areal Silicon Loading, SEI Formation/Irreversible Capacity Loss, Rate Capability Retention and Electrode Durability
    Ezzedine, Mariam
    Jardali, Fatme
    Florea, Ileana
    Zamfir, Mihai-Robert
    Cojocaru, Costel-Sorin
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [32] Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries
    Miyazaki, Reona
    Ohta, Narumi
    Ohnishi, Tsuyoshi
    Takada, Kazunori
    JOURNAL OF POWER SOURCES, 2016, 329 : 41 - 49
  • [33] High capacity graphite-silicon composite anode material for lithium-ion batteries
    Fuchsbichler, B.
    Stangl, C.
    Kren, H.
    Uhlig, F.
    Koller, S.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2889 - 2892
  • [34] The Effect of Commercialized Binders on Silicon Oxide Anode Material for High Capacity Lithium ion Batteries
    Huang, Haijun
    Han, Guangshuai
    Xie, Jingying
    Zhang, Quansheng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (10): : 8697 - 8708
  • [35] Comparative life cycle assessment of lithium-ion batteries with lithium metal, silicon nanowire, and graphite anodes
    Wu, Zheshan
    Kong, Defei
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2018, 20 (06) : 1233 - 1244
  • [36] Theoretical study of the lithium diffusion in the crystalline and amorphous silicon as well as on its surface
    Fedorov, A. S.
    Kuzubov, A. A.
    Eliseeva, N. S.
    Popov, Z. I.
    Visotin, M. A.
    Galkin, N. G.
    PHYSICS AND TECHNOLOGY OF NANOSTRUCTURED MATERIALS II, 2014, 213 : 29 - +
  • [37] Silicon/Graphite/Polyaniline Nanocomposite with Improved Lithium-Storage Capacity and Cyclability as Anode Materials for Lithium-ion Batteries
    Chen, Meng
    Du, Chunyu
    Wang, Long
    Yin, Geping
    Shi, Pengfei
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2012, 7 (01): : 819 - 829
  • [38] Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries
    Breitung, Ben
    Schneider, Artur
    Chakravadhanula, Sai Kiran
    Suchomski, Christian
    Janek, Juergen
    Sommer, Heino
    Brezesinski, Torsten
    BATTERIES & SUPERCAPS, 2018, 1 (01) : 27 - 32
  • [39] Preparation and electrochemical properties of high capacity silicon-based composites for lithium-ion batteries
    Ding, Bo
    Ahsan, Zishan
    Huang, Xuanning
    Cai, Zhenfei
    Ma, Yangzhou
    Song, Guangsheng
    Yang, Weidong
    Wen, Cuie
    SYNTHETIC METALS, 2020, 261
  • [40] High capacity lithium-ion battery anode using silicon-doped blue phosphorene
    Hao, Junhua
    Wang, Zhengjia
    Wang, Yufang
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 150