Adaptive Covers for Mapper Graphs Using Information Criteria

被引:6
作者
Chalapathi, Nithin [1 ]
Zhou, Youjia [2 ]
Wang, Bei [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Utah, Salt Lake City, UT USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
关键词
Topological data analysis; topology in visualization; mapper; information theory;
D O I
10.1109/BigData52589.2021.9671324
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The mapper construction is a widely used tool from topological data analysis in obtaining topological summaries of large, high-dimensional point cloud data. It has enjoyed great success in data science, including cancer research, sports analytics, and visualization. However, developing practical and automatic parameter selection for the mapper construction remains a challenging open problem for both the topological analysis and visualization communities. In this paper, we focus on parameter selection for the 1-dimensional skeleton of the mapper construction, called the mapper graph. Specifically, we explore how information criteria used in the X-means clustering algorithm can inform and generate adaptive covers for mapper graphs. Our approach thus makes novel progress towards automatic parameter selection for the mapper construction using information theory.
引用
收藏
页码:3789 / 3800
页数:12
相关论文
共 54 条
[1]  
AHMED M, 2020, ELECTRONICS-SWITZ, V9, DOI DOI 10.3390/electronics9081295
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Arthur D., 2007, P 18 ANN ACM SIAM S, DOI DOI 10.1145/1283383.1283494
[4]  
Babu A., 2013, THESIS
[5]  
BAUER U, 2015, LEIBNIZ INT P INFORM, V34, P461
[6]  
Bauer U., 2014, P 30 ANN S COMPUTATI, P464, DOI [DOI 10.1145/2582112.2582169, DOI 10.1145/2582112.25821692]
[7]   The Reeb Graph Edit Distance is Universal [J].
Bauer, Ulrich ;
Landi, Claudia ;
Memoli, Facundo .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (05) :1441-1464
[8]   Reeb graphs for shape analysis and applications [J].
Biasotti, S. ;
Giorgi, D. ;
Spagnuolo, M. ;
Falcidieno, B. .
THEORETICAL COMPUTER SCIENCE, 2008, 392 (1-3) :5-22
[9]  
Bollen B., 2021, ARXIV211005631, P2021
[10]  
Burnham K. P., 2003, MODEL SELECTION MULT, DOI DOI 10.1007/B97636