Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells

被引:102
作者
Mao, Lin [1 ]
Chen, Qi [1 ]
Li, Yaowen [1 ,3 ]
Li, Yang [1 ]
Cai, Jinhua [1 ]
Su, Wenming [2 ]
Bai, Sai [4 ]
Jin, Yizheng [4 ]
Ma, Chang-Qi [2 ]
Cui, Zheng [2 ]
Chen, Liwei [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, Div Printed Elect, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Dept Polymer Sci & Engn, Jiangsu Key Lab Adv Funct Polymer Design & Applic, Suzhou 215123, Peoples R China
[4] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Large area; High efficiency organic solar cells; Inverted solar cell; Hybrid electrode; Interfacial layer; POWER CONVERSION EFFICIENCY; OPEN-CIRCUIT VOLTAGE; ITO-FREE; FILL FACTOR; MODULES; TANDEM; LAYER;
D O I
10.1016/j.nanoen.2014.09.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bulk-heterojunction (BHJ) organic solar cell (OSC) has become a major thrust in solar energy research. It is highly critical to fabricate large-area high-efficiency OSCs in order to maximize the fraction of active area and hence their practical application. In this paper, we have fabricated a promising hybrid transparent electrode consisting of high resolution embedded silver grid (Ag-grid) in hybridization with high conductance poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000), which gives both high transparency and low sheet resistance. We further demonstrate its application in large-area high efficiency OSCs. By carefully tuning the properties of the Ag-grid based hybrid electrodes, the sheet resistance is further reduced to as low as 1.2 Omega sq(-1). Inverted OSCs with device area of 1.21 cm(2) exhibited a record PCE of 3.36% for poly(3-hexylthiophene):[6,6]-phenyl-C-61 butyric acid methyl ester (P3HT:PC61BM) blend film as the active layer; and the PCE of PTB7:PC71BM devices reached 5.85%. To the best of our knowledge, the PCE of 5.85% is the highest in large-area flexible OSCs (>1 cm(2)) till date. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 34 条
[1]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[2]  
2-W
[3]   Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells [J].
Cheyns, D. ;
Poortmans, J. ;
Heremans, P. ;
Deibel, C. ;
Verlaak, S. ;
Rand, B. P. ;
Genoe, J. .
PHYSICAL REVIEW B, 2008, 77 (16)
[4]   Area-scaling of organic solar cells [J].
Choi, Seungkeun ;
Potscavage, William J., Jr. ;
Kippelen, Bernard .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
[5]   Retention of Power Conversion Efficiency From Small Area to Large Area Polymer Solar Cells [J].
Das, Anshuman J. ;
Narayan, K. S. .
ADVANCED MATERIALS, 2013, 25 (15) :2193-2199
[6]   ITO-free flexible organic solar cells with printed current collecting grids [J].
Galagan, Yulia ;
Rubingh, Jan-Eric J. M. ;
Andriessen, Ronn ;
Fan, Chia-Chen ;
Blom, Paul W. M. ;
Veenstra, Sjoerd C. ;
Kroon, Jan M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (05) :1339-1343
[7]   Smooth Nanowire/Polymer Composite Transparent Electrodes [J].
Gaynor, Whitney ;
Burkhard, George F. ;
McGehee, Michael D. ;
Peumans, Peter .
ADVANCED MATERIALS, 2011, 23 (26) :2905-2910
[8]  
He ZC, 2012, NAT PHOTONICS, V6, P591, DOI [10.1038/nphoton.2012.190, 10.1038/NPHOTON.2012.190]
[9]   Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells [J].
He, Zhicai ;
Zhong, Chengmei ;
Huang, Xun ;
Wong, Wai-Yeung ;
Wu, Hongbin ;
Chen, Liwei ;
Su, Shijian ;
Cao, Yong .
ADVANCED MATERIALS, 2011, 23 (40) :4636-+
[10]   Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer [J].
Hsieh, Chao-Hsiang ;
Cheng, Yen-Ju ;
Li, Pei-Jung ;
Chen, Chiu-Hsiang ;
Dubosc, Martin ;
Liang, Ru-Meng ;
Hsu, Chain-Shu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (13) :4887-4893