Deep Learning in Automotive Software

被引:56
作者
Falcini, Fabio [1 ]
Lami, Giuseppe [1 ]
Costanza, Alessandra Mitidieri [1 ]
机构
[1] Natl Res Council Italy, Informat Sci & Technol Inst, Rome, Italy
基金
英国医学研究理事会;
关键词
ANNs; artificial intelligence; artificial neural networks; Automotive SPICE; computer vision; computing methodologies; deep neural networks; ISO; 26262; ISO/AWI PAS 21448; neural networks; software development; software engineering; software engineering process; standards; V model; vision and scene understanding; W model;
D O I
10.1109/MS.2017.79
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deep learning is becoming crucial to the development of automotive software for applications such as autonomous driving. Researchers have devised a framework that supports a robust, disciplined development lifecycle for such software.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 11 条
[1]  
[Anonymous], 2011, 26262 ISO 1
[2]  
[Anonymous], THESIS
[3]  
[Anonymous], 2016, 21448 ISOAWI PAS
[4]  
[Anonymous], MODELHUB LIFECYCLE M
[5]  
[Anonymous], 2015, REF MOD VER 3 0
[6]  
Haykin S., 2009, NEURAL NETWORKS LEAR
[7]   Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security [J].
Kang, Min-Joo ;
Kang, Je-Won .
PLOS ONE, 2016, 11 (06)
[8]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[9]  
Levinson J., 2011, P 2011 IEEE INT VEH
[10]   Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine [J].
Parlak, A ;
Islamoglu, Y ;
Yasar, H ;
Egrisogut, A .
APPLIED THERMAL ENGINEERING, 2006, 26 (8-9) :824-828