Elucidating the role of non-covalent interactions in unexpectedly high and selective CO2 uptake and catalytic conversion of porphyrin-based ionic organic polymers

被引:18
作者
Kostakoglu, Sinem T. [1 ]
Chumakov, Yurii [2 ,3 ]
Zorlu, Yunus [1 ]
Sadak, Ali E. [4 ]
Denizalti, Serpil [5 ]
Gurek, Ayse G. [1 ]
Ayhan, Mehmet M. [1 ]
机构
[1] Gebze Tech Univ, Dept Chem, TR-41400 Kocaeli, Turkey
[2] Gebze Tech Univ, Dept Phys, TR-41400 Kocaeli, Turkey
[3] Inst Appl Phys, MD-2028 Kishinev, Moldova
[4] TUBITAK UME, Chem Grp Labs, TR-41470 Gebze, Turkey
[5] Ege Univ, Dept Chem, Izmir, Turkey
来源
MATERIALS ADVANCES | 2021年 / 2卷 / 11期
关键词
COVALENT TRIAZINE FRAMEWORKS; CARBON-DIOXIDE; CYCLIC CARBONATES; CAPTURE; HYDROGEN; LIQUIDS; STORAGE; TETREL; CYCLOADDITION; FIXATION;
D O I
10.1039/d1ma00217a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, we present viologen-porphyrin based ionic covalent organic polymers (H2-ICOP and Zn-ICOP) with multiple CO2-philic sites. The specific surface areas of H2-ICOP and Zn-ICOP were found to be 9 m(2) g(-1) and 20 m(2) g(-1), respectively. CO2 uptake analyses reveal that H2-ICOP exhibits very high CO2 capture uptake (62.9 mg g(-1)), which is one of the highest values among previously reported ICOPs. The results indicate very efficient non-covalent interactions between H2-ICOP and CO2. The possible non-covalent interactions of hydrogen (O-CO2...H-N), tetrel (C-CO2...N, C-CO2...Cl-), pnicogen (O-CO2...N+), and spodium bonds (O-CO2...Zn) between CO2 and H2-ICOP and Zn-ICOP are investigated via symmetry adapted perturbation theory (SAPT) analysis and electrostatic potential maps (MEP). The strength of non-covalent interactions in H2-ICOP and Zn-ICOP is decreasing in the following order Delta E-C...(N) > Delta E-C...(-)(Cl) > Delta E-O...(+)(N) and Delta E-Zn...(O) > Delta E-C...(-)(Cl) > Delta E-C...(N) > Delta E-O...(+)(N), respectively. The major CO2 uptake contribution comes from C-CO2...N tetrel bonding (-22.02 kJ mol(-1)) interactions for H2-ICOP, whereas O-CO2...Zn spodium bonding (-21.065 kJ mol(-1)) interactions for Zn-ICOP. H2-ICOP has more CO2-philic moieties with powerful non-covalent interactions compared to Zn-ICOP, which is in good agreement with the experimental results. Furthermore, the CO2 catalytic conversion performances of Zn-ICOP and H2-ICOP gave good yields of 83% and 54%, respectively. Surprisingly, Zn-ICOP, despite having significantly lower CO2 uptake capacity, displayed better catalytic activity than H2-ICOP, owing to a higher number of counter anions (Cl-) on its surface, which shows the crucial role of the counter anion (Cl-) in the mechanism of this catalytic reaction.
引用
收藏
页码:3685 / 3694
页数:10
相关论文
共 60 条
[11]   Metalloporphyrin Polymers with Intercalated Ionic Liquids for Synergistic CO2 Fixation via Cyclic Carbonate Production [J].
Chen, Yaju ;
Luo, Rongchang ;
Xu, Qihang ;
Jiang, Jun ;
Zhou, Xiantai ;
Ji, Hongbing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01) :1074-1082
[12]   Ultra-high surface area mesoporous carbons for colossal pre combustion CO2 capture and storage as materials for hydrogen purification [J].
Cox, Michael ;
Mokaya, Robert .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (06) :1414-1424
[13]   Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts [J].
Cuellar-Franca, Rosa M. ;
Azapagic, Adisa .
JOURNAL OF CO2 UTILIZATION, 2015, 9 :82-102
[14]   Viologen-Based Conjugated Covalent Organic Networks via Zincke Reaction [J].
Das, Gobinda ;
Skorjanc, Tina ;
Sharma, Sudhir Kumar ;
Gandara, Felipe ;
Lusi, Matteo ;
Rao, D. S. Shankar ;
Vimala, Sridurai ;
Prasad, Subbarao Krishna ;
Raya, Jesus ;
Han, Dong Suk ;
Jagannathan, Ramesh ;
Olsen, John-Carl ;
Trabolsi, Ali .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (28) :9558-9565
[15]   Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO2 Uptake and CO2/N2 Selectivity: Experimental and Computational Studies [J].
Das, Sabuj Kanti ;
Bhanja, Piyali ;
Kundu, Sudipta K. ;
Mondal, Saptarsi ;
Bhaumik, Asim .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (28) :23813-23824
[16]   Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation [J].
Dash, Bibek .
JOURNAL OF MOLECULAR MODELING, 2018, 24 (05)
[17]   Microporous organic polymers for carbon dioxide capture [J].
Dawson, Robert ;
Stoeckel, Ev ;
Holst, James R. ;
Adams, Dave J. ;
Cooper, Andrew I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4239-4245
[18]   Quantifying cooperative intermolecular interactions for improved carbon dioxide capture materials [J].
de Lange, Katrina M. ;
Lane, Joseph R. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (06)
[19]   Viologen-inspired functional materials: synthetic strategies and applications [J].
Ding, Junjie ;
Zheng, Caini ;
Wang, Luxin ;
Lu, Chenbao ;
Zhang, Bin ;
Chen, Yu ;
Li, Mingqiang ;
Zhai, Guangqun ;
Zhuang, Xiaodong .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (41) :23337-23360
[20]   Functionalized Covalent Triazine Frameworks for Effective CO2 and SO2 Removal [J].
Fu, Yu ;
Wang, Zhiqiang ;
Li, Sizhe ;
He, Xunming ;
Pan, Chunyue ;
Yan, Jun ;
Yu, Guipeng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) :36002-36009