Formic Acid Oxidation on Bi-modified Pt Nanoparticles of Various Sizes

被引:17
作者
Jung, Changhoon [1 ]
Zhang, Ting [1 ]
Kim, Byung-Jun [1 ]
Kim, Jandee [1 ]
Rhee, Choong Kyun [1 ,2 ]
Lim, Tae-Hoon [3 ]
机构
[1] Chungnam Natl Univ, Dept Chem, Taejon 305704, South Korea
[2] Chungnam Natl Univ, Grad Sch Analyt Sci & Technol, Taejon 305704, South Korea
[3] Korea Inst Sci & Technol, Fuel Cell Res Ctr, Seoul 136791, South Korea
关键词
Bismuth; Platinum nanoparticle; Size effect; Formic acid oxidation; Catalytic poison; IRREVERSIBLY ADSORBED ADATOMS; SMALL ORGANIC-MOLECULES; CO MONOLAYER OXIDATION; NOBLE-METAL ELECTRODES; HETEROGENEOUS ELECTROCATALYSIS; PLATINUM-ELECTRODES; PT(111) ELECTRODES; CATALYTIC-ACTIVITY; PARTICLE-SIZE; FUEL-CELLS;
D O I
10.5012/bkcs.2010.31.6.1543
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work presents oxidation of formic acid on Bi-modified Pt nanoparticles of various sizes. The sizes of the studied Pt nanoparticles range from 1.5 to 5.6 nm (detailed in Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009,25, 7140-7147), and the surfaces of the Pt nanoparticles are modified with irreversibly adsorbed Bi. The investigated coverages of Bi on the Pt nanoparticles are 0.12 and 0.25 as determined by coulometry of the oxidation of adsorbed hydrogen and Bi, and X-ray photoelectron spectroscopy. The cyclic voltammetric behavior of formic acid oxidation reveals that the adsorbed Bi enhances the catalytic activity IN nanoparticles by impeding a poison-forming dehydration path with a concomitant promotion of a dehydrogenation path. The chronoamperometric results indicate that elemental Bi and partially oxidized Bi are responsible for the catalytic enhancement, when the Bi coverages on Pt nanoparticles are 0.12 and 0.25, respectively. The size effect of Bi-modified Pt nanoparticles in formic acid oxidation is discussed in terms of specific activity (current per unit surface area) and mass activity (current per unit mass).
引用
收藏
页码:1543 / 1550
页数:8
相关论文
共 45 条
[1]   STRUCTURAL EFFECTS IN ELECTROCATALYSIS [J].
ADZIC, RR ;
TRIPKOVIC, AV ;
OGRADY, WE .
NATURE, 1982, 296 (5853) :137-138
[2]   Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes [J].
Baldauf, M ;
Kolb, DM .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (27) :11375-11381
[3]   MEAN COORDINATION NUMBERS AND THE NONMETAL METAL TRANSITION IN CLUSTERS [J].
BENFIELD, RE .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1992, 88 (08) :1107-1110
[4]   Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism [J].
Bock, C ;
Paquet, C ;
Couillard, M ;
Botton, GA ;
MacDougall, BR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :8028-8037
[5]  
BRIGGS D, 1990, PRACTICLE SURFACE AN, V1
[6]  
CAPON A, 1973, J ELECTROANAL CHEM, V45, P205, DOI 10.1016/0368-1874(73)85076-2
[7]   OXIDATION OF FORMIC-ACID AT NOBLE-METAL ELECTRODES .1. REVIEW OF PREVIOUS WORK [J].
CAPON, A ;
PARSONS, R .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1973, 44 (01) :1-7
[8]   CO monolayer oxidation at Pt nanoparticles supported on glassy carbon electrodes [J].
Cherstiouk, OV ;
Simonov, PA ;
Zaikovskii, VI ;
Savinova, ER .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2003, 554 :241-251
[9]   Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells [J].
Choi, Jong-Ho ;
Jeong, Kyoung-Jin ;
Dong, Yujung ;
Han, Jonghee ;
Lim, Tae-Hoon ;
Lee, Jae-Suk ;
Sung, Yung-Eun .
JOURNAL OF POWER SOURCES, 2006, 163 (01) :71-75
[10]  
CLAVILIER J, 1989, J ELECTROANAL CHEM, V261, P113, DOI 10.1016/0022-0728(89)87130-X