Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

被引:29
|
作者
Wang, Bin [1 ]
Xu, Ming [2 ]
Li, Wenju [1 ]
Li, Xiaoli [1 ]
Zheng, Qiangsun [1 ,3 ]
Niu, Xiaolin [1 ]
机构
[1] Fourth Mil Med Univ, Tangdu Hosp, Dept Cardiol, Xian, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Sch Basic Med, Dept Physiol, Shanghai, Peoples R China
[3] Xi An Jiao Tong Univ, Dept Cardiol, Affiliated Hosp 2, Xian, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 06期
基金
中国国家自然科学基金;
关键词
NITRIC-OXIDE SYNTHASE; ISCHEMIA-REPERFUSION INJURY; HUMAN FAILING MYOCARDIUM; HEART-FAILURE; OXIDATIVE STRESS; BETA(3)-ADRENOCEPTOR STIMULATION; CARDIOVASCULAR-SYSTEM; KINASE-II; RECEPTOR; RAT;
D O I
10.1371/journal.pone.0179648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of beta 3-adrenergic receptors (beta 3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the beta 3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of beta 3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of beta 3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230A. Our study suggested that aerobic exercise training could improve cardiac systolic function and alleviate LV chamber dilation, cardiac fibrosis and hypertrophy in HF mice. The mechanism responsible for the protective effects of aerobic exercise is associated with the activation of the beta 3-AR-nNOS-NO pathway.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Shensongyangxin protects against pressure overload-induced cardiac hypertrophy
    Shen, Di-Fei
    Wu, Qing-Qing
    Ni, Jian
    Deng, Wei
    Wei, Cong
    Jia, Zhen-Hua
    Zhou, Heng
    Zhou, Meng-Qiao
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    MOLECULAR MEDICINE REPORTS, 2016, 13 (01) : 980 - 988
  • [2] Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy
    Zhen, Changlin
    Liu, Hongxia
    Gao, Li
    Tong, Yuanyuan
    He, Chaoyong
    FASEB JOURNAL, 2021, 35 (01):
  • [3] Stachydrine Protects Against Pressure Overload-Induced Cardiac Hypertrophy by Suppressing Autophagy
    Cao, Tong-Tong
    Chen, Hui-Hua
    Dong, Zhiwei
    Xu, Yan-Wu
    Zhao, Pei
    Guo, Wei
    Wei, Hong-Chang
    Zhang, Chen
    Lu, Rong
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 42 (01) : 103 - 114
  • [4] Maslinic acid protects against pressure overload-induced cardiac hypertrophy in mice
    Liu, Yan-Ling
    Kong, Chun-Yan
    Song, Peng
    Zhou, Heng
    Zhao, Xing-Sheng
    Tang, Qi-Zhu
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2018, 138 (02) : 116 - 122
  • [5] MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy
    Liu, Wanli
    Liu, Yu
    Zhang, Yan
    Zhu, Xueyong
    Zhang, Rui
    Guan, Lihua
    Tang, Qizhu
    Jiang, Hong
    Huang, Congxin
    Huang, He
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2015, 116 (10) : 2166 - 2176
  • [6] Activation of Cardiac Fibulin-4 Protects Against Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure
    van Deel, Elza
    van Vliet, Nicole
    van den Bosch, Thierry
    van Spreeuwel, Ariane
    Bax, Noortje
    Boontje, Nicky
    Sasaki, Takako
    Van der Velden, Jolanda
    Bouten, C.
    von der Thusen, Jan
    Danser, Jan H.
    Duncker, Dirk J.
    Van der Pluijm, Ingrid
    Essers, Jeroen
    CIRCULATION, 2022, 146
  • [7] Osteopontin RNA Aptamer Protects Against Pressure Overload-Induced Cardiac Dysfunction
    Li, Jihe
    Kurlansky, Paul
    Shehadeh, Lina A.
    CIRCULATION, 2013, 128 (22)
  • [8] Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress
    Zeng, Junyi
    Zhao, Jingjing
    Dong, Bin
    Cai, Xingming
    Jiang, Jingzhou
    Xue, Ruicong
    Yao, Fengjuan
    Dong, Yugang
    Liu, Chen
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2019, 66 : 70 - 78
  • [9] Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation
    Yong-nan Fu
    Han Xiao
    Xiao-wei Ma
    Sheng-yang Jiang
    Ming Xu
    You-yi Zhang
    Acta Pharmacologica Sinica, 2011, 32 : 879 - 887
  • [10] Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation
    Fu, Yong-nan
    Xiao, Han
    Ma, Xiao-wei
    Jiang, Sheng-yang
    Xu, Ming
    Zhang, You-yi
    ACTA PHARMACOLOGICA SINICA, 2011, 32 (07) : 879 - 887