Projective synchronization for fractional-order memristor-based neural networks with time delays

被引:44
作者
Gu, Yajuan [1 ]
Yu, Yongguang [1 ]
Wang, Hu [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Memristor-based neural networks; Synchronization; Fractional-order; Time delays; STABILITY ANALYSIS; EXPONENTIAL SYNCHRONIZATION; ADAPTIVE-CONTROL; CHAOTIC SYSTEM; DYNAMICS; DESIGN;
D O I
10.1007/s00521-018-3391-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the global projective synchronization for fractional-order memristor-based neural networks with multiple time delays is investigated via combining open loop control with the time-delayed feedback control. A comparison theorem for a class of fractional-order systems with multiple time delays is proposed. Based on the given comparison theorem and Lyapunov method, the synchronization conditions are derived under the framework of Filippov solution and differential inclusion theory. Several feedback control strategies are given to ensure the realization of complete synchronization, anti-synchronization and the stabilization for the fractional-order memristor-based neural networks with time delays. Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.
引用
收藏
页码:6039 / 6054
页数:16
相关论文
共 45 条
  • [21] Fractional differentiation by neocortical pyramidal neurons
    Lundstrom, Brian N.
    Higgs, Matthew H.
    Spain, William J.
    Fairhall, Adrienne L.
    [J]. NATURE NEUROSCIENCE, 2008, 11 (11) : 1335 - 1342
  • [22] Projective synchronization in three-dimensional chaotic systems
    Mainieri, R
    Rehacek, J
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (15) : 3042 - 3045
  • [23] Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters
    Park, Ju H.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) : 288 - 293
  • [24] Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter
    Park, Ju H.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1552 - 1559
  • [25] SYNCHRONIZATION IN CHAOTIC SYSTEMS
    PECORA, LM
    CARROLL, TL
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (08) : 821 - 824
  • [26] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746
  • [27] Podlubny I., 1999, FRACTIONAL DIFFERENT
  • [28] Dynamics in fractional-order neural networks
    Song, Chao
    Cao, Jinde
    [J]. NEUROCOMPUTING, 2014, 142 : 494 - 498
  • [29] The missing memristor found
    Strukov, Dmitri B.
    Snider, Gregory S.
    Stewart, Duncan R.
    Williams, R. Stanley
    [J]. NATURE, 2008, 453 (7191) : 80 - 83
  • [30] Stability Analysis of Fractional-Order Neural Networks with Time Delay
    Wang, Hu
    Yu, Yongguang
    Wen, Guoguang
    Zhang, Shuo
    [J]. NEURAL PROCESSING LETTERS, 2015, 42 (02) : 479 - 500