On the Well-posedness of the Ideal MHD Equations in the Triebel-Lizorkin Spaces

被引:58
作者
Chen, Qionglei [1 ]
Miao, Changxing [1 ]
Zhang, Zhifei [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
KATO-MAJDA CRITERION; EULER EQUATIONS; REGULARITY; HYDRODYNAMICS; SINGULARITIES;
D O I
10.1007/s00205-008-0213-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the local well-posedness for the ideal MHD equations in the Triebel-Lizorkin spaces and obtain a blow-up criterion of smooth solutions. Specifically, we fill a gap in a step of the proof of the local well-posedness part for the incompressible Euler equation in Chae (Comm Pure Appl Math 55:654-678 2002).
引用
收藏
页码:561 / 578
页数:18
相关论文
共 23 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]  
[Anonymous], 1983, MONOGRAPH MATH
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
Bergh J., 1976, Grundlehren der Mathematischen Wissenschaften
[5]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[6]   Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [J].
Caflisch, RE ;
Klapper, I ;
Steele, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :443-455
[7]   A losing estimate for the ideal MHD equations with application to blow-up criterion [J].
Cannone, Marco ;
Chen, Qionglei ;
Miao, Changxing .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1847-1859
[8]   On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces [J].
Chae, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (05) :654-678
[9]   On the Euler equations in the critical Triebel-Lizorkin spaces [J].
Chae, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (03) :185-210
[10]  
Chemin J.-Y., 1998, PERFECT INCOMPRESSIB