Painleve analysis, integrability property and multiwave interaction solutions for a new (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation

被引:22
作者
Xu, Gui-qiong [1 ]
Liu, Yin-ping [2 ]
Cui, Wen-ying [2 ]
机构
[1] Shanghai Univ, Sch Management, Dept Informat Management, Shanghai 200444, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
(4+1)-dimensional KdV-CBS equation; Bilinear representation; Bilinear B?cklund transformation; Lax pair; Multiwave interaction solutions; SOLITON-SOLUTIONS; WAVE SOLUTIONS; SYMMETRY;
D O I
10.1016/j.aml.2022.108184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter a novel (4+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff (KdV-CBS) equation is investigated. The Painleve analysis shows that this higher dimensional nonlinear equation passes the integrability test. Its integrable properties, including bilinear Backlund transformation, Lax pair as well as N-soliton solution, are systematically derived using the binary Bell polynomial method. Furthermore, incorporating the inheritance solving technique into direct algebraic method, we construct the multiwave solutions of 1-lump and (N - 2)-soliton (N > 2). Multiple choices of parameters in the obtained solutions lead to rich interactions among lump waves, kink waves and breather waves. Several interesting interactions of the multiwave solutions are shown by graphs. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Ablowitz MJ., 1999, SOLITONS NONLINEAR E
[2]   Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers [J].
Aratyn, H ;
Ferreira, LA ;
Zimerman, AH .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1723-1726
[3]  
Cao YL, 2020, NONLINEAR DYNAM, V99, P3013, DOI 10.1007/s11071-020-05485-x
[4]   Long-time asymptotics for the focusing Fokas-Lenells equation in the solitonic region of space-time [J].
Cheng, Qiaoyuan ;
Fan, Engui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 309 :883-948
[5]   Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation [J].
Cheng, Wen-guang ;
Li, Biao ;
Chen, Yong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 29 (1-3) :198-207
[6]   Multiwave interaction solutions for a (3+1)-dimensional nonlinear evolution equation [J].
Cui, Wenying ;
Li, Wei ;
Liu, Yinping .
NONLINEAR DYNAMICS, 2020, 101 (02) :1119-1129
[7]   Backlund transformation and multi-soliton solutions for the discrete Korteweg-de Vries equation [J].
Dong, Suyalatu ;
Lan, Zhong-Zhou ;
Gao, Bo ;
Shen, Yujia .
APPLIED MATHEMATICS LETTERS, 2022, 125
[8]   Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions [J].
Fokas, A. S. .
PHYSICAL REVIEW LETTERS, 2006, 96 (19)
[9]   Dynamics of soliton interaction solutions of the Davey-Stewartson I equation [J].
Guo, Lijuan ;
Chen, Lei ;
Mihalache, Dumitru ;
He, Jingsong .
PHYSICAL REVIEW E, 2022, 105 (01)
[10]   Lax pairs, infinite conservation laws, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation [J].
Jia, Ting-Ting ;
Gao, Yi-Tian ;
Yu, Xin ;
Li, Liu-Qing .
APPLIED MATHEMATICS LETTERS, 2021, 114