Predictive control for adaptive optics using neural networks

被引:26
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Indirect adaptive control of reactive ion etching using neural networks
    Stokes, D
    May, GS
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (05): : 650 - 657
  • [42] Adaptive output feedback control of nonlinear systems using neural networks
    Calise, AJ
    Hovakimyan, N
    Idan, M
    AUTOMATICA, 2001, 37 (08) : 1201 - 1211
  • [43] Direct Adaptive Inverse Control of Nonlinear Plants using Neural Networks
    Shafiq, Muhammad Amir
    PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), 2016, : 827 - 830
  • [44] Robust supervised learning for closed loop adaptive optics predictive control
    Swanson, Robin
    Taylor, Jacob
    Lamb, Masen
    Sivanandam, Suresh
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [45] DIRECT ADAPTIVE OUTPUT TRACKING CONTROL USING MULTILAYERED NEURAL NETWORKS
    JIN, L
    NIKIFORUK, PN
    GUPTA, MM
    IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1993, 140 (06): : 393 - 398
  • [46] Dual Adaptive Dynamic Control of Mobile Robots Using Neural Networks
    Bugeja, Marvin K.
    Fabri, Simon G.
    Camilleri, Liberato
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (01): : 129 - 141
  • [47] Nonlinear model predictive control of an intensified continuous reactor using neural networks
    Li Shi
    Li Yueyang
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 4101 - 4106
  • [48] Elevating Model Predictive Control Using Feedforward Artificial Neural Networks: A Review
    Arumugasamy, Senthil Kumar
    Ahmad, Zainal
    CHEMICAL PRODUCT AND PROCESS MODELING, 2009, 4 (01):
  • [49] Neural networks and PCA coefficients to identify and correct aberrations in adaptive optics
    Terreri, A.
    Pedichini, F.
    Del Moro, D.
    Li Causi, G.
    Stangalini, M.
    Mattioli, M.
    Piazzesi, R.
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [50] Adaptive optics control using model-based reinforcement learning
    Nousiainen, Jalo
    Rajani, Chang
    Kasper, Markus
    Helin, Tapio
    OPTICS EXPRESS, 2021, 29 (10) : 15327 - 15344