Predictive control for adaptive optics using neural networks

被引:26
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Adaptive control of system with hysteresis using neural networks
    Li Chuntao1 & Tan Yonghong2 1. Coll. of Automation
    2. Lab of Intelligent Systems and Control Engineering
    Journal of Systems Engineering and Electronics, 2006, (01) : 163 - 167
  • [12] Adaptive control of nonlinear dynamic systems using θ-adaptive neural networks
    Yu, SH
    Annaswamy, AM
    AUTOMATICA, 1997, 33 (11) : 1975 - 1995
  • [13] Enabling adaptive pedestals in predictive transport simulations using neural networks
    Gillgren, A.
    Fransson, E.
    Yadykin, D.
    Frassinetti, L.
    Strand, P.
    NUCLEAR FUSION, 2022, 62 (09)
  • [14] Neural networks and multiple models based nonlinear adaptive generalized predictive control
    Shi, Yu-Jing
    Chai, Tian-You
    Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (05): : 540 - 545
  • [15] Neural network forecasting of transonic turbulent flow for adaptive optics control
    Shaffer, Benjamin D.
    Vorenberg, Jeremy R.
    Wilcox, Christopher C.
    McDaniel, Austin J.
    UNCONVENTIONAL IMAGING AND ADAPTIVE OPTICS 2022, 2022, 12239
  • [16] Linear servo motor control using adaptive neural networks
    Lin, CL
    Huang, HT
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2002, 216 (I5) : 407 - 427
  • [17] Robust adaptive control for greenhouse climate using neural networks
    Luan, Xiaoli
    Shi, Peng
    Liu, Fei
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (07) : 815 - 826
  • [18] Adaptive nonlinear control using input normalized neural networks
    Henzeh Leeghim
    In-Ho Seo
    Hyochoong Bang
    Journal of Mechanical Science and Technology, 2008, 22
  • [19] Adaptive control of DGMSCMG using dynamic inversion and neural networks
    Lungu, Romulus
    Lungu, Mihai
    Efrim, Claudia
    ADVANCES IN SPACE RESEARCH, 2021, 68 (08) : 3478 - 3494
  • [20] Adaptive Control of Flexible Redundant Manipulators Using Neural Networks
    宋轶民
    李建新
    王世宇
    刘建平
    Transactions of Tianjin University, 2006, (06) : 429 - 433