Predictive control for adaptive optics using neural networks

被引:26
|
作者
Wong, Alison P. [1 ,2 ]
Norris, Barnaby R. M. [1 ,2 ,3 ]
Tuthill, Peter G. [1 ]
Scalzo, Richard [4 ]
Lozi, Julien [5 ]
Vievard, Sebastien [5 ,6 ]
Guyon, Olivier [5 ,6 ,7 ]
机构
[1] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW, Australia
[2] Univ Sydney, Sydney Astrophoton Instrumentat Labs, Sydney, NSW, Australia
[3] Univ Sydney, AAO USyd, Sch Phys, Sydney, NSW, Australia
[4] Univ Sydney, Ctr Translat Data Sci, Darlington, Australia
[5] Natl Inst Nat Sci, Natl Astron Observ Japan, Subaru Telescope, Hilo, HI USA
[6] NINS, Astrobiol Ctr, Mitaka, Tokyo, Japan
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ USA
基金
日本学术振兴会;
关键词
adaptive optics; neural networks; wavefront sensors; SYSTEM; IMAGES;
D O I
10.1117/1.JATIS.7.1.019001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Adaptive optics (AO) has become an indispensable tool for ground-based telescopes to mitigate atmospheric seeing and obtain high angular resolution observations. Predictive control aims to overcome latency in AO systems: the inevitable time delay between wavefront measurement and correction. A current method of predictive control uses the empirical orthogonal functions (EOFs) framework borrowed from weather prediction, but the advent of modern machine learning and the rise of neural networks (NNs) offer scope for further improvement. Here, we evaluate the potential application of NNs to predictive control and highlight the advantages that they offer. We first show their superior regularization over the standard truncation regularization used by the linear EOF method with on-sky data before demonstrating the NNs' capacity to model nonlinearities on simulated data. This is highly relevant to the operation of pyramid wavefront sensors (PyWFSs), as the handling of nonlinearities would enable a PyWFS to be used with low modulation and deliver extremely sensitive wavefront measurements. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Neural Networks Predictive Control using an Adaptive Control Rate
    Mnasser, Ahmed
    Bouani, Faouzi
    Ksouri, Mekki
    2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 549 - 554
  • [2] Neural Networks Predictive Controller Using an Adaptive Control Rate
    Mnasser, Ahmed
    Bouani, Faouzi
    Ksouri, Mekki
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2014, 3 (03) : 127 - 147
  • [3] Nonlinear model identification and adaptive model predictive control using neural networks
    Akpan, Vincent A.
    Hassapis, George D.
    ISA TRANSACTIONS, 2011, 50 (02) : 177 - 194
  • [4] Neural Networks Predictive Control Using AEPSO
    Hou Zhixiang
    Chen Hui
    Li Heqing
    Proceedings of the 27th Chinese Control Conference, Vol 2, 2008, : 180 - 183
  • [5] Numerical study of adaptive optics compensation based on Convolutional Neural Networks
    Ma, Huimin
    Liu, Haiqiu
    Qiao, Yan
    Li, Xiaohong
    Zhang, Wu
    OPTICS COMMUNICATIONS, 2019, 433 : 283 - 289
  • [6] Adaptive control using neural networks and approximate models
    Narendra, KS
    Mukhopadhyay, S
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 475 - 485
  • [7] Active adaptive combustion control using neural networks
    Blonbou, R
    Laverdant, A
    Zaleski, S
    Kuentzmann, P
    COMBUSTION SCIENCE AND TECHNOLOGY, 2000, 156 (1-6) : 25 - 47
  • [8] Adaptive observer backstepping control using neural networks
    Choi, JY
    Farrell, JA
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (05): : 1103 - 1112
  • [9] Using neural networks for adaptive control of thermal process
    Veleba, V.
    Pivonka, P.
    ANNALS OF DAAAM FOR 2004 & PROCEEDINGS OF THE 15TH INTERNATIONAL DAAAM SYMPOSIUM: INTELLIGNET MANUFACTURING & AUTOMATION: GLOBALISATION - TECHNOLOGY - MEN - NATURE, 2004, : 471 - 472
  • [10] Adaptive attitude control of spacecraft using neural networks
    Leeghim, Henzeh
    Choi, Yoonhyuk
    Bang, Hyochoong
    ACTA ASTRONAUTICA, 2009, 64 (7-8) : 778 - 786