A class of degenerate diffusion equations with mixed boundary conditions

被引:13
作者
Wang, J [1 ]
Wang, ZJ [1 ]
Yin, JX [1 ]
机构
[1] Jilin Univ, Dept Math, Jilin, Peoples R China
关键词
degenerate; diffusion; blow-up;
D O I
10.1016/j.jmaa.2004.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a class of degenerate diffusion equations subject to mixed boundary conditions. Under some structure conditions, we discuss the blow-up property of local solutions and estimate the bounds of "blow-up time." (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:589 / 603
页数:15
相关论文
共 50 条
  • [41] CRITICAL EXPONENT AND BLOW-UP RATE FOR THE ω-DIFFUSION EQUATIONS ON GRAPHS WITH DIRICHLET BOUNDARY CONDITIONS
    Zhou, Weican
    Chen, Miaomiao
    Liu, Wenjun
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [42] Blow-up solutions for nonlinear reaction diffusion equations under Neumann boundary conditions
    Ding, Juntang
    Hu, Hongjuan
    [J]. APPLICABLE ANALYSIS, 2017, 96 (04) : 549 - 562
  • [43] Boundary conditions in TLM diffusion modelling
    Gui, X
    de Cogan, D
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2006, 19 (01) : 69 - 82
  • [44] BOUNDARY-CONDITIONS FOR DIFFUSION OF LIGHT
    ARONSON, R
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (11): : 2532 - 2539
  • [45] Diffusion boundary conditions for photon waves
    Aronson, R
    [J]. OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE: THEORY, INSTRUMENTATION, MODEL, AND HUMAN STUDIES II, PROCEEDINGS OF, 1997, 2979 : 651 - 657
  • [46] Classical solvability of multidimensional two-phase Stefan problem for degenerate parabolic equations and Schauder's estimates for a degenerate parabolic problem with dynamic boundary conditions
    Degtyarev, S. P.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (02): : 185 - 237
  • [47] Blow-up and global existence profile of a class of fully nonlinear degenerate parabolic equations
    Li, Jing
    Yin, Jingxue
    Jin, Chunhua
    [J]. CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1435 - 1447
  • [48] A Degenerate and Singular Parabolic System Coupled Through Boundary Conditions
    Mi, Yong-Sheng
    Mu, Chun-Lai
    Zhou, Shou-Ming
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 229 - 241
  • [49] A boundary estimate for singular parabolic diffusion equations
    Gianazza, Ugo
    Liao, Naian
    Lukkari, Teemu
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2018, 25 (04):
  • [50] On a free boundary problem for a class of anisotropic equations
    Barbu, Luminita
    Enache, Cristian
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (06) : 2005 - 2012