On the properties of Lucas numbers with binomial coefficients

被引:20
作者
Taskara, N. [1 ]
Uslu, K. [1 ]
Gulec, H. H. [1 ]
机构
[1] Selcuk Univ, Fac Sci, Dept Math, TR-42075 Konya, Turkey
关键词
Lucas numbers; Fibonacci numbers; Binomial coefficients; ELEMENTARY-PARTICLES; MASS-SPECTRUM; FIBONACCI;
D O I
10.1016/j.aml.2009.08.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, some new properties of Lucas numbers with binomial coefficients have been obtained to write Lucas sequences in a new direct way. In addition, some important consequences of these results related to the Fibonacci numbers have been given. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:68 / 72
页数:5
相关论文
共 12 条
[1]  
Benjamin AT, 2000, FIBONACCI QUART, V38, P282
[2]   The Fibonacci code behind super strings and P-Branes.: An answer to M. Kaku's fundamental question [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (03) :537-547
[3]  
El Naschie MS, 1999, CHAOS SOLITON FRACT, V10, P1303, DOI 10.1016/S0960-0779(98)00167-2
[4]   The k-Fibonacci sequence and the Pascal 2-triangle [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :38-49
[5]  
Gulec H., 2009, International Journal of Contemporary Mathematical Sciences, V4, P1251
[6]  
Hoggat V.E., 1969, Fibonacci and Lucas numbers, Houghton-Mifflin
[7]  
KOSHY T., 2001, PUR AP M-WI
[8]   The mass spectrum of high energy elementary particles via El Naschie's E(∞) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM [J].
Marek-Crnjac, L .
CHAOS SOLITONS & FRACTALS, 2003, 18 (01) :125-133
[9]   On the mass spectrum of the elementary particles of the standard model using El Naschie's golden field theory [J].
Marek-Crnjac, L .
CHAOS SOLITONS & FRACTALS, 2003, 15 (04) :611-618
[10]   Combinatorial sums and finite differences [J].
Spivey, Michael Z. .
DISCRETE MATHEMATICS, 2007, 307 (24) :3130-3146