Design of broadband and monolayer terahertz metasurface absorber with genetic algorithm optimization

被引:0
作者
Zhang, Ming [1 ]
Cheng, Qian [1 ]
Wu, Yinjin [1 ]
Chen, Dongfang [1 ]
Ma, Ze [1 ]
Li, Cong [1 ]
机构
[1] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Hebei, Peoples R China
来源
10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: MICRO- AND NANO-OPTICS, CATENARY OPTICS, AND SUBWAVELENGTH ELECTROMAGNETICS | 2021年 / 12072卷
关键词
metasurface; terahertz absorber; Genetic algorithm; catenary model; FREQUENCY-SELECTIVE SURFACES;
D O I
10.1117/12.2604481
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Terahertz (THz) absorbers have drawn great attention due to their potential applications in high-resolution imaging systems, sensing, and imaging. In particular, metasurface-based THz absorbers have exhibited the exotic advantage in high efficiency and broad bandwidth benefitted from the excellent abilities of metasurface in flexible modulating electromagnetic (EM) waves. However, the interactions between metasurface and EM waves are complex, and the metasurface-based absorbers have many structural parameters to optimize for high performance. Therefore, the absorbers are constrained by the manual design process with limited geometry complexity and tedious parameters sweeping. In this paper, the genetic algorithm (GA) is employed to the design of THz metasurface absorber. The EM responses of metasurface device is calculated by a simple yet powerful analytic method derived from catenary field. The employment of GA can achieve the automatic design process and demand-oriented reverse design for high performance and decreasing time consumption. As a proof-of-concept, the broadband and monolayer metasurface terahertz absorber with absorbance exceeding 80% in the frequency range from 1 to 4 THz is designed by the proposed strategy based on five typical types of metasurface. The investigations of this article present important guidance and a promising approach to design and optimize metasurface-based devices for their practical applications.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber [J].
Alves, Fabio ;
Grbovic, Dragoslav ;
Kearney, Brian ;
Karunasiri, Gamani .
OPTICS LETTERS, 2012, 37 (11) :1886-1888
[2]  
[Anonymous], 2019, NANOSCALE, V11
[3]   Terahertz Sensing Based on Metasurfaces [J].
Beruete, Miguel ;
Jauregui-Lopez, Irati .
ADVANCED OPTICAL MATERIALS, 2020, 8 (03)
[4]  
Booker H. G., J I ELECT ENG 3
[5]   Terahertz imaging with nanometer resolution [J].
Chen, HT ;
Kersting, R ;
Cho, GC .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3009-3011
[6]   Efficient Analysis of Frequency-Selective Surfaces by a Simple Equivalent-Circuit Model [J].
Costa, Filippo ;
Monorchio, Agostino ;
Manara, Giuliano .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (04) :35-48
[7]   Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces [J].
Costa, Filippo ;
Monorchio, Agostino ;
Manara, Giuliano .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (05) :1551-1558
[8]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[9]   Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion [J].
Guo, Yinghui ;
Wang, Yanqin ;
Pu, Mingbo ;
Zhao, Zeyu ;
Wu, Xiaoyu ;
Ma, Xiaoliang ;
Wang, Changtao ;
Yan, Lianshan ;
Luo, Xiangang .
SCIENTIFIC REPORTS, 2015, 5
[10]   Catenary Electromagnetics for Ultra-Broadband Lightweight Absorbers and Large-Scale Flat Antennas [J].
Huang, Yijia ;
Luo, Jun ;
Pu, Mingbo ;
Guo, Yinghui ;
Zhao, Zeyu ;
Ma, Xiaoliang ;
Li, Xiong ;
Luo, Xiangang .
ADVANCED SCIENCE, 2019, 6 (07)